
MontePython Exercises

MontePython + CLASS Kavli workshop

Cambridge, 2018

Thejs Brinckmann (courtesy of Miguel Zumalacarregui)

September 12, 2018

Running time scales: These exercises only involve fast runs that can be done on a laptop in few
minutes, excepted exercise 3 which has more parameters and may require a few hours of running: thus
we recommend to start exercise 3 in the first session (but after doing exercise 1, in order to get more
familiar with the code), and to analyze the results of this run in the second exercise session. If you
cannot keep your laptop running for a few hours after the first exercise session, try to launch the run of
exercise 3 on a remote desktop or a cluster.

MontePython with parallel chains: if your laptop, desktop or cluster does not have MPI pre-
installed, do not despair! In this case you should just launch multiple chains with separate executions
of MontePython pointing to the same chains directory. There will still be communication between the
chains through small files, with no perceptible loss in e�ciency, even with periodic covariance matrix
update and running jumping factor adaptation.
In both cases, you can speed up each chain by running it on a few cores with e.g. OMP_NUM_THREADS=4
(the CLASS parallelization is e�cient up to about 8 cores).

Exercise 1: The ⌦m � ⌦⇤ plane

This exercise relies on constraints from the cosmic expansion: is fast enough to be done on a laptop
(⇠ 0.1s/model on mine). You can let it run for a few minutes while looking at another exercise, come
back to it and make some cool plots!

We will obtain Baryon Acoustic Oscillation (BAO) constraints on the ⌦m � ⌦⇤ plane for a two
parameter model. We will vary ⌦cdm and ⌦k, keeping ⌦b and H0 fixed by setting the 1� values to zero
(recall ⌦⇤ is a derived parameter). Use the following example:

data.experiments=[’bao_boss_dr12’,’bao_smallz_2014’]

data.parameters[’Omega_cdm’] = [0.3, 0, None, 0.05, 1, ’cosmo’]

data.parameters[’Omega_k’] = [0.0, -0.5,0.5, 0.05, 1, ’cosmo’]

data.parameters[’Omega_Lambda’] = [1,None,None,0, 1, ’derived’]

data.cosmo_arguments[’Omega_b’] = 0.048

data.cosmo_arguments[’h’] = 0.68

data.N=10

data.write_step=5

It is important to give meaningful names to the files and folders to keep track of your work. I suggest
labeling this combination of parameters and experiments as lc_bao.param (this notation means l for
⇤, c = CDM and bao = BAO from BOSS galaxies).
Note: the limits on ⌦k are such that CLASS does not complain.

The basic part of the exercise involves the following steps:

a) Write the above into a .param file (B if you copy/paste from this pdf to a text file, the 0 sign will
appear wrongly in the text file: you will have to replace it manually by a regular vertical single
bracket). Do a short Monte Python run:

1



time python montepython/MontePython.py run -p input/lc_bao.param -o chains/lc_bao -N 10

The time prefix is just to know how long it will take (you can use that information to adjust the
parameters to how much time you have).

b) Now you can do the serious run with four chains. If you are on a cluster or a machine with mpirun
installed, you can type

mpirun -np 4 python montepython/MontePython.py run -o chains/lc_bao -N 10000

but if you are on your laptop, no problem, just launch the four chains one after each other, by
typing four times

python montepython/MontePython.py run -o chains/lc_bao -N 10000 --silent &

In both cases, the chains will exchange information to speed up convergence (since the option
--update 50 is active by default). Note that because you are running from a folder with a
log.param you do not need to provide the .param file again. The --silent option avoids an
unreadable accumulation of plethoric output from your four chains on a single terminal.

c) Relax while your computer does the work. At any time you can check the chain size with
wc -l chains/lc_bao/*.txt. If you are impatient and there are enough points, you can stop
the run (Ctrl+c or four kill commands) and proceed. Because we have only two varying param-
eters, one or two thousands per chain will already give nice plots, three thousands is a luxury.

d) Analyze the chains. You can use MP in info mode:

python montepython/MontePython.py info chains/lc_bao --want-covmat

plus the optional options. Take at the nice plots in chains/lc_bao/plots and at all the other
files generated in the analysis. Eventually, the covariance matrix file lc_bao.covmat and bestfit
file lc_bao.bestfit could be passed in input of another similar run (with -c and -b ) in order to
speed up convergence.

e) You are encouraged to play with the di↵erent options. Try to plot the marginalized contours using
⌦m = ⌦cdm + ⌦b instead of ⌦cdm. This can be done with a customisation file
--extra plot_file/my_customization.plot, and in particular by playing with the commands
info.redefine and info.to_change documented in plot_file/example.plot .

f) If you do other runs with some parameters in common but with other datasets (some ideas are
suggested below), you can plot them together. Just write the list of output folders after info .
How do the di↵erent constraints compare?

B Make sure that each model/data combination goes to a di↵erent -o directory! Otherwise you’ll
keep running the same thing over and over again.

The rest of the exercise is optional and slightly harder. Bear in mind that the amount of free
parameters increases and the runs will require more time.

More realistic BAO analysis: By not varying ⌦b, H0 we are fixing the comoving BAO scale rs.
Although rs is well constrained by the CMB, there is some variability, which you may take into account
by letting ⌦b vary within some range.

Do a run varying the baryon fraction. You can do this in two ways

a) More elegant: add a gaussian prior on !b ⌘ ⌦bh
2 = 0.02222± 0.00023, or equivalently, a gaussian

likelihood. This is the goal of exercise 2.

b) Easier: add a top-hat prior to allow for 2� deviations (with an appropriate input line of the type
data.parameters[’omega_b’] = [...] in the .param file, while the line fixing Omega_b should
be commented out).

2



Supernovae: There are other background observations besides BAO, like type 1A Supernovae (SNe).
Run the same model with the Union SNe compilation with data.experiments=[’sn’] (slightly obsolete
data, but easy to run).
For a more challenging option you can use the JLA SNe sample data.experiments=[’JLA’]. You need
to download the data, the numexpr package and add several nuisance parameters. Read the instructions
in the likelihood folder and jla.param.

Exercise 2: Adding a new likelihood

Adding a new likelihood in Montepython is only as complex as the likelihood itself. You will get to see
with this simple example.

Our goal is to add a gaussian prior on the physical baryon density using the Planck result

!b = ⌦bh
2 = 0.02222± 0.00023 , (1)

(https://arxiv.org/abs/1502.01589, Table 1, col 6). The steps are:

a) Copy a simple likelihood folder from montepython/likelihoods (for instance hst) and rename it
as cmb_baryon. Change the name of the .data file to be cmb_baryon.data.

b) In cmb_baryon.data change hst!cmb_baryon and h!omega_b. Update the central value and
standard deviation according to eq. (1).

c) Update __init__.py by changing the name of the class, the data (as given .data file, it is read
as self.xxx) and the theoretical value (cosmos.omega_b() as given by classy)

You can launch a short run with

data.experiments=[’cmb_baryon’]

data.parameters[’omega_b’] = [2, 0, None, 0.02, 1e-2, ’cosmo’]

data.N=10

data.write_step=5

and check that the chains are roughly gaussianly distributed around the mean (note that the parameter
is rescaled by 1e-2).

Exercise 3: Constraining �8

We now want to compute a posterior probability distribution on �8. This parameter can be treated by
CLASS either as an input parameter (and then As is inferred by a shooting method and should not be
passes simultaneously as an input parameter), or as a derived parameter (and then As should be an
input parameter). The first approach is more interesting because it will guarantee that we sample �8

with a flat prior.

a) In order to constrain �8 we need datasets that constrain the amplitude of the matter power spec-
trum, for example sdss_lrgDR7 and/or kids450_qe_likelihood_public. The SDSS galaxy clus-
tering likelihood works out of the box, whereas the recent KIDS-450 weak lensing likelihood by
Fabian Köhlinger requires downloading the data externally and changing the path to the data in
the .data file. For instructions on using KIDS-450 see the readme in the likelihood folder for
instructions.

b) We suggest to vary the following parameters (the most important one for the matter power spec-
trum): �8, ns, h, !cdm, while !b can be kept fixed to 0.02222. Keep the likelihoods of exercise 1
(bao_boss_dr12, bao_smallz_2014, eventually supernovae) in order to get some additional con-
straints on !cdm and h, and add the likelihood hst (direct measurement of H0) to have one more
independent constraint on h. Finally, to ensure convergence, it is wise to put at least some loose
top-hat prior bounds on ns, for instance [0.8, 1.0].

This longer run is a good occasion to try running with the option --superudate 20 , in order to
speed up convergence.

3

https://arxiv.org/abs/1502.01589

