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1 Basic usage: input syntax, standard output

1.1 Playing with the Planck best-fit model

There is no advantage in doing this exercise in a python script/notebook, because it requires no plotting,
nor any manipulation of input/output data... So you can just run in a terminal with an input file.

Here is the table of best-fit parameters from the Planck 2013 Cosmological Parameter paper:Planck Collaboration: Cosmological parameters

Planck Planck+lensing Planck+WP

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022242 0.02217 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.11805 0.1186 ± 0.0031 0.12038 0.1199 ± 0.0027

100✓MC . . . . . . . . 1.04122 1.04132 ± 0.00068 1.04150 1.04141 ± 0.00067 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0949 0.089 ± 0.032 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9675 0.9635 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . . . 3.098 3.103 ± 0.072 3.098 3.085 ± 0.057 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6964 0.693 ± 0.019 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3036 0.307 ± 0.019 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8285 0.823 ± 0.018 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.45 10.8+3.1

�2.5 11.37 11.1 ± 1.1

H0 . . . . . . . . . . . 67.11 67.4 ± 1.4 68.14 67.9 ± 1.5 67.04 67.3 ± 1.2

109As . . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.19+0.12
�0.14 2.215 2.196+0.051

�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14094 0.1414 ± 0.0029 0.14305 0.1426 ± 0.0025

⌦mh3 . . . . . . . . . 0.09597 0.09590 ± 0.00059 0.09603 0.09593 ± 0.00058 0.09591 0.09589 ± 0.00057

YP . . . . . . . . . . . 0.247710 0.24771 ± 0.00014 0.247785 0.24775 ± 0.00014 0.247695 0.24770 ± 0.00012

Age/Gyr . . . . . . . 13.819 13.813 ± 0.058 13.784 13.796 ± 0.058 13.8242 13.817 ± 0.048

z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.01 1090.16 ± 0.65 1090.48 1090.43 ± 0.54

r⇤ . . . . . . . . . . . 144.58 144.75 ± 0.66 145.02 144.96 ± 0.66 144.58 144.71 ± 0.60

100✓⇤ . . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.00062

zdrag . . . . . . . . . . 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58

rdrag . . . . . . . . . . 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59

kD . . . . . . . . . . . 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14022 0.14009 ± 0.00063

100✓D . . . . . . . . . 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.00034

zeq . . . . . . . . . . . 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60

100✓eq . . . . . . . . . 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011

rdrag/DV(0.57) . . . . 0.07130 0.0716 ± 0.0011 0.07207 0.0719 ± 0.0011 0.07126 0.07147 ± 0.00091

Table 2. Cosmological parameter values for the six-parameter base ⇤CDM model. Columns 2 and 3 give results for the Planck
temperature power spectrum data alone. Columns 4 and 5 combine the Planck temperature data with Planck lensing, and columns
6 and 7 include WMAP polarization at low multipoles. We give best fit parameters as well as 68% confidence limits for constrained
parameters. The first six parameters have flat priors. The remainder are derived parameters as discussed in Sect. 2. Beam, calibration
parameters, and foreground parameters (see Sect. 4) are not listed for brevity. Constraints on foreground parameters for Planck+WP
are given later in Table 5.

3.2. Hubble parameter and dark energy density

The Hubble constant, H0, and matter density parameter, ⌦m,
are only tightly constrained in the combination ⌦mh3 discussed
above, but the extent of the degeneracy is limited by the e↵ect
of ⌦mh2 on the relative heights of the acoustic peaks. The pro-
jection of the constraint ellipse shown in Fig. 3 onto the axes
therefore yields useful marginalized constraints on H0 and ⌦m
(or equivalently ⌦⇤) separately. We find the 2% constraint on
H0:

H0 = (67.4 ± 1.4) km s�1 Mpc�1 (68%; Planck). (13)

The corresponding constraint on the dark energy density param-
eter is

⌦⇤ = 0.686 ± 0.020 (68%; Planck), (14)

and for the physical matter density we find

⌦mh2 = 0.1423 ± 0.0029 (68%; Planck). (15)

Note that these indirect constraints are highly model depen-
dent. The data only measure accurately the acoustic scale, and

the relation to underlying expansion parameters (e.g., via the
angular-diameter distance) depends on the assumed cosmology,
including the shape of the primordial fluctuation spectrum. Even
small changes in model assumptions can change H0 noticeably;
for example, if we neglect the 0.06 eV neutrino mass expected
in the minimal hierarchy, and instead take

P
m⌫ = 0, the Hubble

parameter constraint shifts to

H0 = (68.0 ± 1.4) km s�1 Mpc�1 (68%; Planck,
P

m⌫ = 0). (16)

3.3. Matter densities

Planck can measure the matter densities in baryons and dark
matter from the relative heights of the acoustic peaks. However,
as discussed above, there is a partial degeneracy with the spec-
tral index and other parameters that limits the precision of the
determination. With Planck there are now enough well measured
peaks that the extent of the degeneracy is limited, giving ⌦bh2 to
an accuracy of 1.5% without any additional data:

⌦bh2 = 0.02207 ± 0.00033 (68%; Planck). (17)
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We will focus only on the best-fit ΛCDM model of Planck+WP (penultimate column).

1. Write a short input file with the appropriate values of ωb, ωcdm (Ωch
2 in the paper), H0 or h,

τreio (τ in the paper). Run only the background and thermodynamics module for this model (to
do so, just leave the output field blank, which is the default)1. To get some standard output, set
input verbose, background verbose and thermodynamics verbose to one. To be sure that you
don’t have syntax errors in your input file, setting write warnings = yes is healthy. Look at the
different lines of standard output. Do you reproduce accurately the age of the Universe in Gyr
given in the paper (here, accurately means e.g. up to better than 0.1σ) ?

2. Part of the difference comes from different settings for other parameters. To work with exactly
the same parameters as in the Planck paper, you need to add one massive neutrino species with
m = 0.06 eV. Thus you need to add one non-cold-dark-matter (ncdm) species, and to reduce the
number of ultra-relativistic (ur) relics to two (plus small corrections coming from the details of
neutrino decoupling models, which would be 0.046 for 3 massless neutrinos and 0.03351 for two
massless neutrinos):

N_ur = 2.03351

N_ncdm = 1

m_ncdm = 0.06

Run again with these additional parameters. Do you get closer to the age indicated in the paper?
Check also that you get the same or nearly the same value for the redshift and comoving sound
horizon at recombination (z∗, r∗ in the paper), redshift and comoving sound horizon at baryon drag
(zdrag, rdrag in the paper), and reionization redhsift (zre in the paper).

3. The tiny residual difference in the 6th digit of the age could be due either to precision settings or
systematic errors in camb (used in the table) or class. In class there are only two parameters
controlling the precision of the background integration. Here they are, with their default settings
as implemented in input.c:

back_integration_stepsize = 7.e-3

tol_background_integration = 1.e-2

tol_ncdm_bg = 1.e-5

Try smaller values of these parameters (either in the same .ini file or in a .pre file, as you prefer),
to check whether the calculation of the age at the level of the 6th digit is well converged or not
with default settings.

4. Check that if instead of h = 0.6704, you pass 100*theta s with the value indicated in the Planck
table (in the 3rd line), you get a different value of H0. The reason is that the paper gives θMC , an
analytic approximation to the actual ratio θs = ddecs /ddecA (sound horizon at decoupling over angular
diameter distance to decoupling) computed internally by CosmoMC. Instead, class computes the
true θs = ddecs /ddecA with a numerical integration. To know the true θs, go back to the previous run
in which you specified h = 0.6704 in input. Use the standard output of the code to get the correct
100 θs. Now pass this value and check that you get the right h.

1in this exercise, we care only about the background and thermodynamics evolution, so it is not necessary to pass the
same values of ln(1010As) (or As) and ns as in the paper. So they can be left unspecified. If we wanted to reproduce
the same Cl’s or P (k) as for the Planck best-fit model, we would need to pass the correct ln(1010As) (or As) and ns, the
correct pivot scale k pivot = 0.05 , and to specify some fields for output = ...
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2 Python notebooks (or scripts)

2.1 Playing with output spectra

For the default ΛCDM model:

1. Plot on the same figure (log-lin) the lensed and unlensed CTTl of scalars, to see the effect of
smoothing of the maxima and minima of the spectrum. When plotting inside the notebook with
%matplotlib notebook you may find it nice to use the zooming to rectangle tool to zoom on peak
maxima and minima.

2. Turn on tensor modes with a tensor-to-scalar ratio r = 0.1 (close to the current upper bound).
Plot on the same figure (log-log) the contribution to CBBl from tensor modes and from lensing
(or in other words, the unlensed CBBl and the difference between the lensed and unlensed ones).
Check that B modes are dominated by lensing on small scales. The calculation goes much faster if
you don’t try to get the primordial CBBl up to very high l (the default, l max tensors = 500, is
sufficient).

3. Plot on the same figure (log-log) the linear and non-linear matter power spectrum at z = 0 and z = 2,
to see that at low redshift non-linear corrections appear on larger scales / smaller wavenumber.

2.2 Playing with thermodynamics

Plot the free electron fraction xe as a function of redshift z for the default ΛCDM model, in log-log scale,
for 0.1 < z < zmax, where zmax is returned by CLASS. Check visually that xe � 1 between reionization
(z ∼ 10) and recombination (z ∼ 1100).

2.3 Playing with inflation and primordial spectra

Here the goal is to use the inflation simulator and to compute the primordial scalar and tensor power
spectrum for a quadratic inflation model, with a potential V (φ) = 1

2m
2φ2 and 1

2m
2 = 1.72 × 10−12 (in

natural units). After plotting the two spectra on the same figure (log-log), you can check that the values
of As, ns, αs inferred by class from the numerically computed primordial spectra look reasonable given
Planck data, while r is a bit too high (this is why the model is now excluded at a few sigma’s).

Hints: turn on the inflation simulator with P k ini type set to inflation V end (this will only be ac-
cepted if you are computing some perturbations, thus ’output’ should not be empty, and if you require
both scalar and tensor modes). Then, by default, the code will assume a polynomial potential of the form
V (φ) =

∑
i=0,...,4 Vparamiφ

i. To switch on just the quadratic term, set Vparam0 to Vparam4 to zero,
excepted Vparam2 = 1.72e-12. The number of e-folds between “horizon crossing for the pivot scale” and
the end of inflation can be adjusted to 55 with the parameter N star. The values of the derived parameters
can be read either in the python notebook using the function .get derived parameters([’A s’,...]),
or directly in the standard output if you have set primordial verbose to 2.

2.4 Impact of baryons on the matter power spectrum

Plot the ratio of matter power spectrum for ∼ 5 values of ωb (log-lin) ranging from ∼ 0 to 0.1, and check
the effect of baryons: it should be a step-like suppression with superimposed oscillations (the BAOs).

Hints: Start from the public notebook varying neff.ipynb and adapt it to your needs. Ideally you
would take a reference model with ωb = 0, but no Boltzmann code will allow you to do that: a certain
amount of baryons is needed in order to have a tightly-coupled photon-baryon fluid at the time of initial
conditions. Thus it is recommend to take a very small value like ωb = 10−3 as the reference. Since
for the purpose of the plot you will use very unrealistic values of ωb, the code cannot use its feature

3



of “automatically determining the primordial Helium fraction YHe using an interpolation table encoding
the results of BBN codes”. Thus it is better to fix the primordial Helium fraction manually (syntax in
CLASS python scripts: ’YHe’:0.25).

10 3 10 2 10 1 100

k [h 1Mpc]

0.0

0.2

0.4

0.6

0.8

1.0

P(
k)

/P
(k

)[
b

=
0.

00
1]

b = 0.0208
b = 0.0406
b = 0.0604
b = 0.0802
b = 0.1

2.5 More advanced: visualizing the evolution of CMB perturbations for a
few modes

Reproduce figure 8.1 from Scott Dodelson’s book Modern Cosmology. The vertical axis is the combi-
nation of perturbations k3/2 (Θ0 + Ψ), while the horizontal axis is the conformal time divided by the
recombination time. This plot is pedagogically interesting because the CMB spectrum is given mainly
by the value of this quantity evaluated at the time of recombination for different wavenumbers.

Hints: Given that Θ0 ≡ 〈δT/T 〉 and that δγ ≡ 4〈δT/T 〉, the quantity k3/2 (Θ0 + Ψ) is given in class

4



notations by −2
(
1
4delta g + psi

)
. The factor k3/2 has been replaced with a −2 because class nor-

malizes all perturbations to an initial curvature perturbation R = 1 while Dodelson normalizes them
to R = − 1

2k
−3/2. The ration η/η∗ is given in class notations by τ/τrec, and the conformal time at

recombination can be extracted with .get derived parameters([’tau rec’])

2.6 More advanced: visualizing the evolution of all perturbations for one
mode

Plot the evolution of the perturbations −δc, −δb, − 3
4δγ , φ, ψ for the wavenumber k = 0.5 Mpc−1, as a

function of conformal time. Once you are done it can be fun to check a few well-known results from your
cosmological perturbation courses:

• φ and ψ nearly equal.

• δb = − 3
4δγ until approaching the baryon drag time, and |δb| starting to grow after that time.

• there are five regimes for δc: constant, logarithmic growth (concave function), power-law growth
going asymptotically like τ2, small slow-down at the end (Λ domination).

• baryons try to catch up CDM during matter domination, but this is a slow process.
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Hints: If you want to show like in the above figure the time of Hubble crossing (optional), you can
simply approximate it as τ∗ ' 1/k. If you want to show the time of baryon drag (optional), it is easy to
extract it with .get current derived parameters([’tau d’]). If you want to show the time of equality
(optional), it is more difficult, because CLASS does not compute it. One way is to use .get background()

to build an array of values of [(ωb + ωcdm)/(ωγ + ων)] versus time. Then the interp1d interpolation
function can allow you to find the precise time at which this ratio crosses one. All this can be done in
only 5 lines in the script.

2.7 More advanced: visualizing the transfer functions at a given time

Reproduce the following plot from Ue-Li Pen et al. 1311.3422, illustrating the contribution of various
wavenumbers to the relative bulk flow between massive neutrinos and cold dark matter (in the synchronous
gauge, which is the default in class).
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Hints: In class notations,

∆2
vνc ≡ P(k)

[
θν(k, z)− θc(k, z)

k

]2
with P(k) = As(k/0.05)ns−1, θc = 0 in the synchronous gauge (by definition), and θν is the transfer
function labelled by t ncdm[0] (if there is only one non-cold-dark-matter species).

3 Modifying class

3.1 Implement ηb as a new input parameter

Implement the baryon asymmetry parameter ηb as a new input parameter, as an alternative to ωb or Ωb.

Note that Ωbh
2 = 1.81 ·106ηb

(
Tγ,0
K

)3
. The temperature Tγ,0 in Kelvins is called pba->T cmb in the code.

Of course class should accept only one out of the three input parameters (ηb, ωb, Ωb), otherwise there
would be some redundancy. To check how to code this, you can look at what is done for the photon
density input...

3.2 A very simple modification of gravity

There exist several ways to parametrize modifications of gravity. For instance, people often study the
effect of a function µ(k, τ) inserted in the Poisson equation, giving in the synchronous gauge:

k2η − 1

2

a′

a
h′ = −µ(k, τ) 4πGa2ρ̄totδtot .

The perturbed Einstein equations are defined in a single place, in perturb einstein(...). Localize the
above equation and implement, for instance, µ = 1+a3. Or if you want to do it in a nicer way, implement
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µ = 1+αa3 where α is a new input parameter that should be declared within the perturbation structure,
read in input.c, and assigned a default value of 0.

Once the modification is done, print the evolution of φ and ψ in the standard and modified models
(with α = 1), and conclude that the CTTl ’s should be affected only through the late ISW effect. Get a
confirmation by comparing directly the Cl’s of the two cases.

3.3 Comparing the evolution of perturbations in the newtonian and syn-
chronous gauge

We have seen (e.g. through the notebook one k) that it is possible to output the evolution of all pertur-
bations for a given k as a function of conformal time τ .

1. Try to localize the function in which this output is actually defined (i.e., for instance, the place
specifying that if we want such an output, the code should store the value of quantities like delta g,

theta g, shear g, which are the first three multipoles of the photon temperature perturbations).
To find the answer without knowing the code by heart, you can follow this typical strategy: logically,
to which module should this function belong? In which file *.c should it be written? Try to localize
the description of this file in the online automatic documentation. Browse the detailed description
of all the functions in this file. Find the one answering the question.

2. By browsing the doc and/or the file itself, try to understand how gauges are dealt with in this
function, in particular: if we run either in synchronous or newtonian gauge, will the code output
delta g, theta g, shear g in that gauge, or will it systematically convert the output to one of
the two gauges?

3. After eventually modifying the code (only a little bit), write a short notebook in order to plot the
evolution of delta g, theta g, shear g as a function of time for the mode k = 0.01 Mpc−1 in the
two gauges. Check that the behavior of delta g and theta g is very different in these two gauges
on super-Hubble scales, while the photon shear shear g is gauge-invariant.
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