
CLASS
the Cosmological Linear Anisotropy Solving System1

Julien Lesgourgues, Deanna C. Hooper
TTK, RWTH Aachen University

Kavli Institute for Cosmology, Cambridge, 11-13.09.2018

1code developed by Julien Lesgourgues & Thomas Tram plus many others

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 1/28

class in Cambridge

Lecture 1: A few basics about class

Lecture 2: How to run it from python scripts / jupyter notebooks

Lecture 3: Guidelines for modifying / developing the code

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 2/28

Context

class is the 5th public Einstein-Boltzmann solver covering all basic cosmology:

1 COSMICS package in f77 (Bertschinger 1995)
Basic equations, brute-force CTTl

2 CMBFAST in f77 (Seljak & Zaldarriaga 1996)

Line-of-sight, CEE,TE,BBl , open universe, CMB lensing

3 CAMB in f90/2000 (Lewis & Challinor 1999)
closed universe, better lensing, new algorithms, new approximations, new
species, new observables... (http://camb.info)

4 CMBEASY in C++ (Doran 2003)

5 class in C (Lesgourgues & Tram 2011)
simpler polarisation equations, new algorithms, new approximations, new
species, new observables... (http://class-code.net)

... and there will probably be 1 or 2 more! But only CAMB and class are still
developed and kept to high precision level.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 3/28

http://camb.info
http://class-code.net

Context

Project started on request of Planck science team, in order to have a tool independent
from CAMB, and check for possible Boltzmann-code-induced bias in parameter
extraction. The class-CAMB comparison has triggered progress in the accuracy of
both codes. Agreement established at 10−4 (0.01%) level for CMB observables, using
highest-precision settings in both codes. But the class projected expanded and went
much further than the initial Planck purposes.

class aims at being:

general (more models, more output/observables)

modern (structured, modular, flexible, wrap-able: wrapper for python, C++,
automatic precision test code)

user friendly (documented, structured, easy to understand) and hence easier to
modify (coding additional models/observables)

accurate and fast (currently comparable to CAMB; in principle, clear structure
offers potential for further optimisation/parallelisation/vectorisation/etc.)

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 4/28

With class you can get:

The CMB anisotropy spectra:

101 102 10310 8

10 6

10 4

10 2

100

(
+

1)
C

XY l
/2

[×
10

10
]

r = 0.1

TT(s)
EE(s)
TT(t)
EE(t)
BB(t)
BB(lensing)

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 5/28

With class you can get:

The matter power spectrum:

10-4 10-3 10-2 10-1 100

k (h/Mpc)

10-1

100

101

102

103

104

105
P
(k

)
(h

/M
p
c)

3
Matter power spectrum: linear, HALOFIT

z=0: linear

z=0: nonlinear

z=2: linear

z=2: nonlinear

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 6/28

With class you can get:

The transfer functions at a given time/redshift (e.g. initial conditions for N-body):

10-4 10-3 10-2 10-1 100 101

k (h/Mpc)

10-4

10-3

10-2

10-1

100

101

102

103

104

−
δ(
k
,t
)/
R

(k
,τ
in
i)

density transfer functions at z=100

δγ

δb

δcdm

δur

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 7/28

With class you can get:

The matter density (number count) Cl’s, or the lensing Cl’s (with arbitrary
selection/window functions):

101 102

l

10-13

10-12

10-11

10-10

10-9

10-8

10-7
[`

(`
+

1)
]2
C
φ
φ

l
/2
π

lensing potential spectrum (gaussians bins, ∆z=0.1)

linear: z=0.1

linear: z=0.3

linear: z=0.5

halofit: z=0.1

halofit: z=0.3

halofit: z=0.5

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 8/28

With class you can get:

The background evolution in a given cosmological model:

100 101 102 103 104

conformal time [Mpc]

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

1012

d
e
n
si

ti
e
s

[M
p
c2

]

ργ

ρb

ρcdm

ρν

ρΛ

10 1 100 101

z

10 1

100

101

Di
st

an
ce

×
H

0

lum. dist.
comov. dist.
ang.diam.dist.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 9/28

With class you can get:

The thermal history in a given cosmological model:

100 101 102 103 104

z

10-4

10-3

10-2

10-1

100

xe

102 103 104

[Mpc]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

vi
sib

ilit
y

g
[M

pc
1]

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 10/28

With class you can get:

The time evolution of perturbations for individual Fourier modes:

10-1 100 101 102 103 104

tau [Mpc]

10-2

10-1

100

101

102

103

104

105
k=1 h/Mpc, normalised to R(k,auini) =1

|δγ |
|δb |
|δν |
|δcdm|

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 11/28

With class you can get:

... and several other quantities, for instance:

distance–redshift relations, sound horizon, characteristic redshifts;

primordial spectrum for given inflationary potential;

decomposition of CMB Cl’s in intrinsic, Sachs-Wolfe, Doppler, ISW, etc.;

decomposition of galaxy number count Cl’s in density, RSD, lensing, etc.;

...

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 12/28

With class you can get:

... if you use class as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various ways, and make all kinds of
computations or nice plots:

101 102 103

Multipole
0.85

0.90

0.95

1.00

C
TT

/C
TT

(N
ef

f=
3.

04
6)

Neff = 0.5
Neff = 1
Neff = 1.5
Neff = 2

10 3 10 2 10 1 100

k [h 1Mpc]

1.00

1.05

1.10

1.15

1.20

P(
k)

/P
(k

)[N
ef

f=
3.

04
6] Neff = 0.5

Neff = 1
Neff = 1.5
Neff = 2

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 13/28

With class you can get:

... if you use class as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various ways, and make all kinds of
computations or nice plots:

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 14/28

With class you can get:

... and movies of CMB perturbations in 2D slices of early universe with our Real space
graphical interface (just released in v2.7.0); here is a snapshot:

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 15/28

With class you can get:

... all this for a wide range of cosmological models: all those implemented in the
public CAMB code, plus several other ingredients, especially in the sectors of:

primordial perturbations (internal inflationary perturbation module with given
V (φ), takes arbitrary BSI spectra, correlated isocurvature modes),

neutrinos (chemical potentials, arbitrary phase-space distributions, flavor
mixing...),

Dark Matter (warm, annihilating, decaying, interacting...),

Dark Energy (fluid with flexible w(a) + sound speed, quintessence with given
V (φ))

also Modified Gravity if you try the recently released HiCLASS branch (Bellini,
Sawicki, Zumalacarregui, http://www.hiclass-code.net)

multi-gauge (synchronous, newtonian...)

extension to second-order perturbation theory: SONG (Fidler, Pettinari, Tram,
https://github.com/coccoinomane/song)

interfacing with particle physics modules and codes for exotic energy injection
available in ExoCLASS branch of
http://github.com/lesgourg/class_public.git (Stöcker, Poulin)

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 16/28

http://www.hiclass-code.net
https://github.com/coccoinomane/song
http://github.com/lesgourg/class_public.git

class coding spirit

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 17/28

class coding spirit

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 17/28

class coding spirit

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 17/28

class coding spirit

Accessible and self-contained

Plain C (for performance and readability) but mimicking features of C++ (see later).
No external libraries for a quick installation (but parallelisation requires OpenMP).
Lots of comments in the code, plus automatic doxygen documentation

Structured and flexible

Sequence of ten modules with distinct physical tasks, no duplicate equations.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 18/28

class coding spirit

Accessible and self-contained

Plain C (for performance and readability) but mimicking features of C++ (see later).
No external libraries for a quick installation (but parallelisation requires OpenMP).
Lots of comments in the code, plus automatic doxygen documentation

Structured and flexible

Sequence of ten modules with distinct physical tasks, no duplicate equations.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 18/28

class coding spirit

Plethoric accumulation of extended models/observables/features without making the
code slower or less readable

Relies on homogeneous style and strict rules (e.g. anything related to given feature is
inside an: if (has_feature == _TRUE_){...})

No hard-coding

All indices allocated dynamically (according to strict and homogeneous rules for
more readability): see dedicated section in third lecture

All arrays allocated dynamically

Essentially no number found in the codes except factors in physical equations

No hard-coded precision parameters, all precision-related numbers/flags
gathered in single structure precision

Not a single global variable: all variables passed as arguments of functions (for
readability and parallelisation)

Sampling steps inferred dynamically by the code for each model

Time for switching approximations on/off inferred dynamically by the code for
each model

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 19/28

class coding spirit

Plethoric accumulation of extended models/observables/features without making the
code slower or less readable

Relies on homogeneous style and strict rules (e.g. anything related to given feature is
inside an: if (has_feature == _TRUE_){...})

No hard-coding

All indices allocated dynamically (according to strict and homogeneous rules for
more readability): see dedicated section in third lecture

All arrays allocated dynamically

Essentially no number found in the codes except factors in physical equations

No hard-coded precision parameters, all precision-related numbers/flags
gathered in single structure precision

Not a single global variable: all variables passed as arguments of functions (for
readability and parallelisation)

Sampling steps inferred dynamically by the code for each model

Time for switching approximations on/off inferred dynamically by the code for
each model

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 19/28

class coding spirit

Rigorous error management

In principle, no segmentation faults when executing public class.
When class fails, it returns an error message with a tree-like information (like e.g.
python)
We’ll see how this works in third lecture...

Version history

All previous versions can be downloaded and compared on GitHub, changes
documented in class-code.net

Always aim at developing without breaking compatibility with older versions.
Own changes can often be merged in newer version with git merge.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 20/28

class coding spirit

Rigorous error management

In principle, no segmentation faults when executing public class.
When class fails, it returns an error message with a tree-like information (like e.g.
python)
We’ll see how this works in third lecture...

Version history

All previous versions can be downloaded and compared on GitHub, changes
documented in class-code.net

Always aim at developing without breaking compatibility with older versions.
Own changes can often be merged in newer version with git merge.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 20/28

Installation

Installation should be straightforward on Linux, and slightly tricky but still easy on
Mac. We suggest to not even try on Windows.
We really recommend cloning the code from GitHub. The old-fashioned way, i.e.
downloading a .tar.gz, also works.
In the ideal case you would just need to type in your terminal

> git clone http:// github.com/lesgourg/ class_public .git

class

> cd class/

> make clean;make -j

and you would be done. To check whether the C code is correctly installed, you can
type

> ./class explanatory.ini

which should run the code and write some output on the terminal. To check whether
the python wrapper installation also worked, try

> python

>>> from classy import Class

>>>

and just check that python does not complain. If any of these steps does not work,
please look at the detailed installation instructions at
https://github.com/lesgourg/class_public/wiki/Installation

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 21/28

https://github.com/lesgourg/class_public/wiki/Installation

Once the code is installed, where do I find documentation?

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 22/28

Once the code is installed, where do I find documentation?

1 Basic information and links:

in the historical class webpage http://class-code.net

in the pdf manual included in the doc folder, or the online documentation

page (from the previous page, or from

https://github.com/lesgourg/class_public/wiki, click on the link

online html documentation), in the first three subsections:

class: Cosmic Linear Anisotropy Solving System

Where to find information and documentation on class? (includes

references to many papers useful to understand the class equations

and physics)

class overview (architecture, input/output, general principles)

2 More advanced:

several detailed courses at different levels on Julien’s course webpage

https://lesgourg.github.io/courses.html, especially the courses

from Tokyo; this lecture will be added there too.

full automatically-generated documentation (including dependence trees)

on the online html documentation, in the last sections: Data

Structures, Files.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 23/28

http://class-code.net
https://github.com/lesgourg/class_public/wiki
https://lesgourg.github.io/courses.html

class/ directory

In your class directory (e.g. class public-2.7.0/), you should see:

explanatory.ini # reference input file

source/ # the 10 modules of class:

ALL THE PHYSICS

tools/ # auxiliary pieces of code (numerical methods):

ALL THE MATH (no external C library)

main/ # main class function: short , just calls 10 modules

test/ # other main functions for testing part of the code

output/ # output files (when running from terminal)

include/ # header files (*.h) containing declarations

doc/ # pdf version of the manual

python/ # python wrapper of class

cpp/ # C++ wrapper of class

notebooks/ # example of jupyter notebooks

scripts/ # same as plain python scripts

RealSpaceInterface/ # graphical interface

plus a few other directories containing ancillary data (bbn/) or interfaced codes
(hyrec/, external Pk/)

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 24/28

The 10 class modules

Executing class means going once through the sequence of modules:

1. input.c # parse/make sense of input parameters

(advanced logic)

2. background.c. # homogeneous cosmology

3. thermodynamics.c. # ionisation history , scattering rate

4. perturbations.c. # linear Fourier perturbations

5. primordial.c. # primordial spectrum , inflation

6. nonlinear.c # recipes for non -linear corrections

to 2-point statistics

7. transfer.c. # from Fourier to multipole space

8. spectra.c. # 2-point statistics (power spectra)

9. lensing.c # CMB lensing

10. output.c # print out (not used from python)

Plain C (for performances and readability purposes) mimicking C++ and
object-oriented programming:

In C++: 10 ”classes”, each with a constructor/destructor and a few functions
callable from outside.

In class: each module (files *.c and *.h) is associated to one structure (with
all its input/output data), one initialisation function, one freeing function, and a
few functions callable from outside.

main executable only consists in calling the 10 initialisation and ten freeing
functions!

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 25/28

Running in terminal with input file (old fashioned)

Run with any input file with (compulsory) extension *.ini:

> ./class explanatory.ini

It gives some output:

Reading input parameters

-> matched budget equations by adjusting Omega_Lambda =

6.878622e-01

Running CLASS version v2.7.0

Computing background

-> age = 13.795359 Gyr

-> conformal age = 14165.045412 Mpc

Computing thermodynamics with Y_He =0.2453

-> recombination at z = 1089.184869

(...)

Writing output files in output/explanatory01_ ...

All possible input parameters and details on the syntax explained in
explanatory.ini

This is only a reference file; we advise you to never modify it, but rather to copy
it and reduce it to a shorter and more friendly file.

For basic usage: explanatory.ini ≡ full documentation of the code

output comes from 10 verbose parameters fixed to 1 in explanatory.ini (see
them with > tail explanatory.ini)

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 26/28

Running in terminal with input file (old fashioned)

Run with any input file with (compulsory) extension *.ini:

> ./class explanatory.ini

It gives some output:

Reading input parameters

-> matched budget equations by adjusting Omega_Lambda =

6.878622e-01

Running CLASS version v2.7.0

Computing background

-> age = 13.795359 Gyr

-> conformal age = 14165.045412 Mpc

Computing thermodynamics with Y_He =0.2453

-> recombination at z = 1089.184869

(...)

Writing output files in output/explanatory01_ ...

All possible input parameters and details on the syntax explained in
explanatory.ini

This is only a reference file; we advise you to never modify it, but rather to copy
it and reduce it to a shorter and more friendly file.

For basic usage: explanatory.ini ≡ full documentation of the code

output comes from 10 verbose parameters fixed to 1 in explanatory.ini (see
them with > tail explanatory.ini)

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 26/28

Running in terminal with input file (old fashioned)

Run with your own input file with (compulsory) extension *.ini:

>./class my_model.ini

With for instance:

output = tCl ,pCl ,lCl ,mPk

lensing = yes # include CMB lensing effect

non linear = halofit # non -linear P(k) from HALOFIT

root = output/my_model_

write warnings = yes # will alert you if wrong input syntax

more comments , ignored because no equal sign in this line

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed are fixed to default, i.e. the most reasonable or
minimalistic choice (ΛCDM with Planck 2013 bestfit)

You can restore the online output with

> tail explanatory.ini >> my_model.ini

to append 10 verbose parameters at the end of my_model.ini

./class can take two input files *.ini and *.pre:

>./class my_model.ini cl_permille.pre

But one is enough.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 27/28

Running in terminal with input file (old fashioned)

Run with your own input file with (compulsory) extension *.ini:

>./class my_model.ini

With for instance:

output = tCl ,pCl ,lCl ,mPk

lensing = yes # include CMB lensing effect

non linear = halofit # non -linear P(k) from HALOFIT

root = output/my_model_

write warnings = yes # will alert you if wrong input syntax

more comments , ignored because no equal sign in this line

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed are fixed to default, i.e. the most reasonable or
minimalistic choice (ΛCDM with Planck 2013 bestfit)

You can restore the online output with

> tail explanatory.ini >> my_model.ini

to append 10 verbose parameters at the end of my_model.ini

./class can take two input files *.ini and *.pre:

>./class my_model.ini cl_permille.pre

But one is enough.

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 27/28

Running in terminal with input file (old fashioned)

Results are in several files output/my_model_*.dat

Can be quickly plotted with provided python script CPU.py (Class Plotting Unit):

> python CPU.py output/my_model_cl_lensed.dat

> python CPU.py output/my_model_cl.dat -y TT --scale loglin

> python CPU.py output/my_model_pk.dat

with options visible with

> python CPU.py --help

101 102 103

0

1

2

3

4

5

6

7

1e 10
my_model_cl: TT

10 5 10 4 10 3 10 2 10 1 100 101

k (h/Mpc)

100

101

102

103

104

my_model_pk: P(Mpc/h)^3

Also provide similar MATLAB script plot_CLASS_output.m, get syntax with

help plot_class_output

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 28/28

Running in terminal with input file (old fashioned)

Results are in several files output/my_model_*.dat

Can be quickly plotted with provided python script CPU.py (Class Plotting Unit):

> python CPU.py output/my_model_cl_lensed.dat

> python CPU.py output/my_model_cl.dat -y TT --scale loglin

> python CPU.py output/my_model_pk.dat

with options visible with

> python CPU.py --help

101 102 103

0

1

2

3

4

5

6

7

1e 10
my_model_cl: TT

10 5 10 4 10 3 10 2 10 1 100 101

k (h/Mpc)

100

101

102

103

104

my_model_pk: P(Mpc/h)^3

Also provide similar MATLAB script plot_CLASS_output.m, get syntax with

help plot_class_output

11-13.09.2018 J. Lesgourgues & D. C. Hooper CLASS Lecture 1 (Basics) 28/28

