Cosmological Parameter Extraction from Data

Benjamin Audren

Institute of Theoretical Physics École Polytechnique Fédérale de Lausanne

12/05/2014

Outline

Introduction

- Need for a statistical tool
- Bayesian approach
- 2 Comparison of existing methods
 - Metropolis-Hastings
 - Importance Sampling
 - EEMCE
 - Nested Sampling

Outline

Introduction

- Need for a statistical tool
- Bayesian approach

Bibliography

Book

 Bayesian methods in cosmology (Hobson, Jaffe, Liddle, Mukherjee and Parkinson)

Review Articles

- Comparison of sampling techniques for Bayesian parameter estimation (*Rupert Allison, Joanna Dunkley*, arXiv:1308.2675)
- Bayes in the sky: Bayesian inference and model selection in cosmology (*Roberto Trotta*, arXiv:0803.4089)

Precise measurement of random realisations

Beginning of precision experiments with WMAP

Precise measurement of random realisations

- Beginning of precision experiments with WMAP
- Cosmology is a stochastic theory, requiring observation of statistical quantities

Precise measurement of random realisations

- Beginning of precision experiments with WMAP
- Cosmology is a stochastic theory, requiring observation of statistical quantities
- A set of parameters produce prediction for these statistical quantities

Precise measurement of random realisations

- Beginning of precision experiments with WMAP
- Cosmology is a stochastic theory, requiring observation of statistical quantities
- A set of parameters produce prediction for these statistical quantities
- How to infer the value of the parameters from the data ?

Precise measurement of random realisations

- Beginning of precision experiments with WMAP
- Cosmology is a stochastic theory, requiring observation of statistical quantities
- A set of parameters produce prediction for these statistical quantities
- How to infer the value of the parameters from the data ?

Similar to Particle Physics

Prediction only for, *e.g.* the rate of decay of a particle. Information acquired when statistically observing this decay channel (how many times did it decay to this particular product ?)

The big picture

Bayesian approach from Bayesian Methods in Cosmology

Bayesian methods

• All quantities are considered statistical

Bayesian approach from Bayesian Methods in Cosmology

Bayesian methods

- All quantities are considered statistical
- The question we can answer is: is this model better than another ?

Bayesian approach

from Bayesian Methods in Cosmology

Bayesian methods

- All quantities are considered statistical
- The question we can answer is: is this model better than another ?
- We infer **credible regions** in which, given a model, the parameters live.

Bayesian approach

from Bayesian Methods in Cosmology

Bayesian methods

- All quantities are considered statistical
- The question we can answer is: is this model better than another ?
- We infer **credible regions** in which, given a model, the parameters live.
- Our knowledge depends on the data measured.

Bayesian approach

Definitions

Given a **context** \mathcal{I} and a set of **data** D:

- θ : **continuous** values for a parameter set
- $pr(\theta) \ge 0$: **probability** function is positive

•
$$\int \operatorname{pr}(\theta) \mathrm{d}\theta = 1$$
: Sum rule

 $\parallel \mathcal{I}$

• $pr(\phi, \theta) = pr(\phi|\theta)pr(\theta)$: Product rule

Bayes Theorem

All quantities are given in the context ${\mathcal I}$

$\operatorname{pr}(\theta)\operatorname{pr}(D \theta)$	=	$\operatorname{pr}(\theta, D)$	=	$\operatorname{pr}(D)\operatorname{pr}(\theta D)$
$\textbf{Prior} \times \textbf{Likelihood}$	=	Joint	=	$\textbf{Evidence} \times \textbf{Posterior}$
$\pi(heta)\mathcal{L}(heta)$	=		=	$E\mathcal{P}(heta)$
Input		\longrightarrow		Output

Bayes Theorem

All quantities are given in the context ${\mathcal I}$

$\operatorname{pr}(\theta)\operatorname{pr}(D \theta)$	=	$\operatorname{pr}(\theta, D)$	=	$\operatorname{pr}(D)\operatorname{pr}(\theta D)$
Prior × Likelihood	=	Joint	=	$Evidence\timesPosterior$
$\pi(heta)\mathcal{L}(heta)$	=		=	$E\mathcal{P}(heta)$
Input		\longrightarrow		Output

Prior

A priori information on the parameters. Most of the time, it is **flat** (uniform chance to be inside a given volume).

Bayes Theorem

All quantities are given in the context ${\mathcal I}$

$\mathrm{pr}(heta)\mathrm{pr}(\mathbf{D} heta)$	=	$\operatorname{pr}(\theta, D)$	=	$\operatorname{pr}(D)\operatorname{pr}(\theta D)$
Prior × Likelihood	=	Joint	=	$Evidence\timesPosterior$
$\pi(heta)\mathcal{L}(heta)$	=		=	$E\mathcal{P}(heta)$
Input		\longrightarrow		Output

Likelihood

Given by the instrument operated at *known input*. If uncontrolled unknow: **nuisance parameters**.

Bayes Theorem

All quantities are given in the context ${\mathcal I}$

$\operatorname{pr}(heta)\operatorname{pr}(D heta)$	=	$\operatorname{pr}(\theta, D)$	=	$\operatorname{pr}(\mathbf{D})\operatorname{pr}(\theta D)$
$Prior \ \times \ Likelihood$	=	Joint	=	$\textbf{Evidence} \times \text{Posterior}$
$\pi(heta)\mathcal{L}(heta)$	=		=	$\mathbf{E}\mathcal{P}(heta)$
Input		\longrightarrow		Output

Evidence

Only recovered with Nested Sampling, gives an information on how well the given context suits the data.

Bayes Theorem

All quantities are given in the context ${\mathcal I}$

$\operatorname{pr}(heta)\operatorname{pr}(D heta)$	=	$\operatorname{pr}(\theta, D)$	=	$\operatorname{pr}(D)\operatorname{pr}(heta \mathbf{D})$
$Prior \ \times \ Likelihood$	=	Joint	=	$Evidence \times \mathbf{Posterior}$
$\pi(heta)\mathcal{L}(heta)$	=		=	$E\mathcal{P}(heta)$
Input		\longrightarrow		Output

Posterior Distribution

The name of the game. Inferred distribution of probability, after using the data.

Complete Rules

$$\int \pi(\theta) d\theta = \int \mathcal{P}(\theta) d\theta = 1$$
$$E = \int \mathcal{L}(\theta) \pi(\theta) d\theta$$
$$\mathcal{P}(\theta) = \frac{\pi(\theta) \mathcal{L}(\theta)}{E}$$

Bayesian approach: issues

What are the problems ?

- Evidence is hard to compute because...
- we don't usually know the Likelihood function (analytically).
- so we don't know where to sample it (many dimensions)...
- and it might be computationally expensive.

Bayesian approach: issues

What are the problems ?

- Evidence is hard to compute because. . .
- we don't usually know the Likelihood function (analytically).
- so we don't know where to sample it (many dimensions)...
- and it might be computationally expensive.

How to deal with it ?

- we have to sample randomly the volume (all methods)
- we can avoid computing this integral by **computing ratios** (*mcmc*)

Methods that give the Evidence

Comparison between models

Evidence is **how well your context explains the data**. Nested Sampling gives this. Others dont...but best-fit likelihood gives some indication.

Methods that give the Evidence

Comparison between models

Evidence is **how well your context explains the data**. Nested Sampling gives this. Others dont...but best-fit likelihood gives some indication.

Caution

These methods will only give you a **probable** answer, not a definite one. It is the price you pay for not doing your integral exactly.

Living without the evidence

Theoretically motivated model: we want to know the values of this parameter to explain the data. Then, the **posterior** is an interesting quantity, and the **evidence** can be left aside temporarily.

Living without the evidence

Theoretically motivated model: we want to know the values of this parameter to explain the data. Then, the **posterior** is an interesting quantity, and the **evidence** can be left aside temporarily.

Nonetheless

Beware of the best-fit likelihood value !

Outline

2 Comparison of existing methods

- Metropolis-Hastings
- Importance Sampling
- EEMCE
- Nested Sampling

Algorithm and Sampler

Algorithm

Tells you how to **choose** which point you move, and if you **accept** a new point or not

Sampler

Tells you how to move, select a new point.

Sometimes used interchangeably

Algorithm and Sampler Foreword

available in Monte Python

As of v2.0.0, you can use **MultiNest** (nested sampling, by Farhan Feroz & Mike Hobson), and the **CosmoHammer** (emcee, by Joel Akeret & Sebastian Seehars)

Algorithm and Sampler Foreword

available in Monte Python

As of v2.0.0, you can use **MultiNest** (nested sampling, by Farhan Feroz & Mike Hobson), and the **CosmoHammer** (emcee, by Joel Akeret & Sebastian Seehars)

MultiNest

MultiNest was easily implemented in Monte Python thanks to **PyMultiNest**, done by Johannes Buchner, and the help of Jesus Torrado

Algorithm and Sampler Foreword

available in Monte Python

As of v2.0.0, you can use **MultiNest** (nested sampling, by Farhan Feroz & Mike Hobson), and the **CosmoHammer** (emcee, by Joel Akeret & Sebastian Seehars)

MultiNest

MultiNest was easily implemented in Monte Python thanks to **PyMultiNest**, done by Johannes Buchner, and the help of Jesus Torrado

Cosmo Hammer

Thanks to Joel and Sebastian for helping setting this up

Courtesy of Sebastian Seehars

Courtesy of Sebastian Seehars

Metropolis-Hastings Courtesy of Sebastian Seehars

Courtesy of Sebastian Seehars

Metropolis-Hastings Courtesy of Sebastian Seehars

multiplicity + 1

BA (EPFL)

Courtesy of Sebastian Seehars

Metropolis-Hastings Courtesy of Sebastian Seehars

Importance Sampling

Not a real sampling

- start from an existing, similar distribution
- add the new likelihood at every already sampled point
- write a new chain, with the multiplicity changed:

$$\tilde{N} = N \frac{\tilde{\mathcal{L}}}{\mathcal{L}}$$

Benefits of Importance Sampling

When to use it?

- Existing run with a set of slow experiments
- Want to add one more experiment (prior on H_0)
- This should be very fast!

EEMCE

emcee Courtesy of Sebastian Seehars

emcee Courtesy of Sebastian Seehars

EEMCE

emcee Courtesy of Sebastian Seehars

Goals

• Trying to answer a different question: is this model better?

Goals

- Trying to answer a different question: is this model better?
- Computes the evidence E (Occam's razor)

Goals

- Trying to answer a different question: is this model better?
- Computes the evidence E (Occam's razor)
- As a by-product: **posterior distribution**!

Goals

- Trying to answer a different question: is this model better?
- Computes the evidence *E* (Occam's razor)
- As a by-product: **posterior distribution**!

Pros/Cons

Good to explore weirdly shaped distributions, but scales not so well with many parameters

Procedure

• Active set (\simeq 200 points) chosen randomnly in prior range

Procedure

- $\bullet\,$ Active set ($\simeq 200$ points) chosen randomnly in prior range
- Iterate over the points: **discard least likely**, pick a new point until a **more likely** is found

Procedure

- Active set (\simeq 200 points) chosen randomnly in prior range
- Iterate over the points: **discard least likely**, pick a new point until a **more likely** is found
- To propose a new point: approximate the posterior distribution by encompassing all other points within an ellipse.

Procedure

- Active set (\simeq 200 points) chosen randomnly in prior range
- Iterate over the points: **discard least likely**, pick a new point until a **more likely** is found
- To propose a new point: approximate the posterior distribution by encompassing all other points within an ellipse.
- The sorting of these points by **increasing likelihood** allows to compute the evidence (\simeq trapezoidal integration)

Mathematical Procedure

$$E = \int \mathcal{L}(\theta)\pi(\theta)d\theta$$
$$dX = \pi(\theta)d\theta: \text{ prior volume}$$
$$X(\lambda) = \int_{\mathcal{L}(\theta) > \lambda} \pi(\theta)d\theta$$
$$E = \int_0^1 \mathcal{L}(X)dX$$

 $\mathcal{L}(X)$ is a monotonically decreasing function of X

At each time step

- The integral E is computed with the active set
- The prior volume shrinks on the most likely points
- Stops when $\Delta E < 0.5$