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Introduction Need for a statistical tool

Precision Cosmology

Precise measurement of random realisations

Beginning of precision experiments with WMAP

Cosmology is a stochastic theory, requiring observation of
statistical quantities

A set of parameters produce prediction for these statistical
quantities

How to infer the value of the parameters from the data ?

Similar to Particle Physics

Prediction only for, e.g. the rate of decay of a particle. Information
acquired when statistically observing this decay channel (how many times
did it decay to this particular product ?)
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Introduction Bayesian approach

The big picture

As, ωb, ωm,
ns, τreio,. . .

class
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Introduction Bayesian approach

Bayesian approach
from Bayesian Methods in Cosmology

Bayesian methods

All quantities are considered statistical

The question we can answer is: is this model better
than another ?

We infer credible regions in which, given a model,
the parameters live.

Our knowledge depends on the data measured.
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Introduction Bayesian approach

Bayesian approach

Definitions

Given a context I and a set of data D:

θ: continuous values for a parameter set

pr(θ) ≥ 0: probability function is positive∫
pr(θ)dθ = 1: Sum rule

pr(φ, θ) = pr(φ|θ)pr(θ): Product rule

|| I
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Introduction Bayesian approach

Bayes Theorem

Bayes Theorem

All quantities are given in the context I

pr(θ)pr(D|θ) = pr(θ,D) = pr(D)pr(θ|D)
Prior × Likelihood = Joint = Evidence × Posterior

π(θ)L(θ) = . . . = EP(θ)
Input −→ Output
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Input −→ Output

Prior

A priori information on the parameters. Most of the time, it is flat
(uniform chance to be inside a given volume).
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Likelihood

Given by the instrument operated at known input. If uncontrolled
unknow: nuisance parameters.
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Bayes Theorem

All quantities are given in the context I

pr(θ)pr(D|θ) = pr(θ,D) = pr(D)pr(θ|D)
Prior × Likelihood = Joint = Evidence × Posterior

π(θ)L(θ) = . . . = EP(θ)
Input −→ Output

Evidence

Only recovered with Nested Sampling, gives an information on how
well the given context suits the data.
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Introduction Bayesian approach

Bayes Theorem

Bayes Theorem

All quantities are given in the context I

pr(θ)pr(D|θ) = pr(θ,D) = pr(D)pr(θ|D)
Prior × Likelihood = Joint = Evidence × Posterior

π(θ)L(θ) = . . . = EP(θ)
Input −→ Output

Posterior Distribution

The name of the game. Inferred distribution of probability, after
using the data.
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Introduction Bayesian approach

Bayes Theorem

Complete Rules

∫
π(θ)dθ =

∫
P(θ)dθ = 1

E =

∫
L(θ)π(θ)dθ

P(θ) =
π(θ)L(θ)

E
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Introduction Bayesian approach

Bayesian approach: issues

What are the problems ?

Evidence is hard to compute because. . .

we don’t usually know the Likelihood function (analytically).

so we don’t know where to sample it (many dimensions). . .

and it might be computationally expensive.

How to deal with it ?

we have to sample randomly the volume (all methods)

we can avoid computing this integral by computing ratios
(mcmc)
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Introduction Bayesian approach

Methods that give the Evidence

Comparison between models

Evidence is how well your context explains the data. Nested Sampling
gives this. Others dont. . . but best-fit likelihood gives some indication.

Caution

These methods will only give you a probable answer, not a definite one. It
is the price you pay for not doing your integral exactly.
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Introduction Bayesian approach

But. . .

Living without the evidence

Theoretically motivated model: we want to know the values of this
parameter to explain the data. Then, the posterior is an interesting
quantity, and the evidence can be left aside temporarily.

Nonetheless

Beware of the best-fit likelihood value !
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Comparison of existing methods

Algorithm and Sampler
Foreword

Algorithm

Tells you how to choose which point you move, and if you accept a new
point or not

Sampler

Tells you how to move, select a new point.

Sometimes used interchangeably
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Comparison of existing methods

Algorithm and Sampler
Foreword

available in Monte Python

As of v2.0.0, you can use MultiNest (nested sampling,
by Farhan Feroz & Mike Hobson), and the CosmoHammer
(emcee, by Joel Akeret & Sebastian Seehars)

MultiNest

MultiNest was easily implemented in Monte Python
thanks to PyMultiNest, done by Johannes Buchner, and
the help of Jesus Torrado

Cosmo Hammer

Thanks to Joel and Sebastian for helping setting this up
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Comparison of existing methods Metropolis-Hastings

Metropolis-Hastings
Courtesy of Sebastian Seehars
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Comparison of existing methods Metropolis-Hastings

Metropolis-Hastings
Courtesy of Sebastian Seehars

multiplicity + 1
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Comparison of existing methods Importance Sampling

Importance Sampling

Not a real sampling

start from an existing, similar distribution

add the new likelihood at every already sampled point

write a new chain, with the multiplicity changed:

Ñ = N
L̃
L
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Comparison of existing methods Importance Sampling
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Comparison of existing methods Importance Sampling

Benefits of Importance Sampling

When to use it?

Existing run with a set of slow experiments

Want to add one more experiment (prior on H0)

This should be very fast!
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Comparison of existing methods EEMCE

emcee
Courtesy of Sebastian Seehars
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Comparison of existing methods Nested Sampling

Nested Sampling

Goals

Trying to answer a different question: is this model better?

Computes the evidence E (Occam’s razor)

As a by-product: posterior distribution!

Pros/Cons

Good to explore weirdly shaped distributions,
but scales not so well with many parameters
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Comparison of existing methods Nested Sampling

Nested Sampling

Procedure

Active set (' 200 points) chosen randomnly in prior range

Iterate over the points: discard least likely, pick a new
point until a more likely is found

To propose a new point: approximate the posterior
distribution by encompassing all other points within
an ellipse.

The sorting of these points by increasing likelihood
allows to compute the evidence (' trapezoidal integration)
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Comparison of existing methods Nested Sampling

Nested Sampling

Mathematical Procedure

E =

∫
L(θ)π(θ)dθ

dX = π(θ)dθ: prior volume

X(λ) =

∫
L(θ)>λ

π(θ)dθ

E =

∫ 1

0
L(X)dX

L(X) is a monotonically decreasing function of X
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Nested Sampling

BA (EPFL) CLASS/MP Parameter Extraction 25 / 26



Comparison of existing methods Nested Sampling

Nested Sampling

BA (EPFL) CLASS/MP Parameter Extraction 25 / 26



Comparison of existing methods Nested Sampling

Nested Sampling

BA (EPFL) CLASS/MP Parameter Extraction 25 / 26



Comparison of existing methods Nested Sampling

Nested Sampling

BA (EPFL) CLASS/MP Parameter Extraction 25 / 26



Comparison of existing methods Nested Sampling

Nested Sampling

BA (EPFL) CLASS/MP Parameter Extraction 25 / 26



Comparison of existing methods Nested Sampling

Nested Sampling

At each time step

The integral E is computed with the active set

The prior volume shrinks on the most likely points

Stops when ∆E < 0.5
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