Numerical solution of ODEs in 15 minutes

Thomas Tram thomas.tram@epfl.ch

Thomas Tram (thomas.tram@epfl.ch)

The first ODE method

Consider only *explicit* systems of *first order* equations with known *initial conditions*:

...but never use it!

Consider a test equation

$$y' = -15y$$
, $y(t) = y(0)e^{-15t}$

Friday, 16 May 2014 London Hack Days

Thomas Tram (thomas.tram@epfl.ch)

What went wrong?

- Different time scales
 - the dynamic time scale is different from the time scale of interest.
 - Cosmology: $au_{
 m int} vs au_{H_0}$
 - Example from before: $\tau_{int} = \frac{1}{15} vs [0,1]$
- Equilibrium
 - a trivial equilibrium solution exists.
 - Cosmology: Tight coupling limit
 - Example from before: $y(t) \rightarrow 0$

Similar to WIMP Freeze-Out

Friday, 16 May 2014 London Hack Days

The test equation

Consider the test equation y' = ay, $y(t) = y(0)e^{at}$. The forwards Euler method reads $y_{n+1} = y_n + f(t, y_n)h$ $= y_n + a y_n h$ $= (1 + ah)y_{n}$ Remaining bounded for Re(a) < 0 requires $||1 + ah|| \le 1$. Thus a = -15 requires $h < \frac{2}{15}$.

Stability issue revisited

So we must have $h < \frac{2}{15}$, even during equilibrium evolution!

Friday, 16 May 2014 London Hack Days

Thomas Tram (thomas.tram@epfl.ch)

Let's try something different...

Approximate the derivative at time t_{n+1} by $y'_{n+1} \simeq \frac{y_{n+1} - y_n}{t_{n+1} - t_n}$ This leads to the backwards Euler method:

 $y_{n+1} = y_n + f(t_{n+1}, y_{n+1})h$

Backwards Euler

The equation $y_{n+1} = y_n + f(t_{n+1}, y_{n+1})h$ is in general a equations. Ba Consider $y' = \frac{1}{2}$ oupled $\overline{y}_{n+1} = \overline{y}_n + a\overline{y}_{n+1}h \Rightarrow$ $y_{n+1} = \frac{1}{1 - ah} y_n.$

Best method for perturbations?

Explicit method

Pros:

- Easy to code ODE-solver
- Fast (well) after tight coupling

Cons:

- Stiffness must be removed by hand by TCA
- Not robust against new physics

Implicit method

Pros:

- Eliminate the need for TCA
- Very robust against users

Cons:

- Can be slow due to algebraic system
- More difficult to code

evolver_ndf15.c

ndf15: multistep extension of backwards Euler.

- Speed relies on
 - Variable order 1-5
 - Adaptive step size
 - Dense output
 - Recycle Jacobians for Newtons method
 - Sparse LU decompositions

Friday, 16 May 2014 London Hack Days

Various slides not used

Runge-Kutta methods

- Definition of a s-stage Runge-Kutta method
- Butcher tableau
- Explicit methods
 Euler, RK4
- Embedded methods
 RKDP(4)5
- Implicit Runge-Kutta?
 BE, Radau..

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \sum_{i=1}^{s} b_i \mathbf{k}_i,$$
$$\mathbf{k}_i \equiv f\left(t_n + c_i h, \mathbf{y}_n + \sum_{j=1}^{s} a_{ij} \mathbf{k}_j\right).$$

Stability domains for various methods

Friday, 16 May 2014 London Hack Days

BDF/NDF variable order methods

Define the backwards difference operator:

 $\nabla^{0} \mathbf{y}_{n} \equiv \mathbf{y}_{n},$ $\nabla^{j+1} \mathbf{y}_{n} \equiv \nabla^{j} \mathbf{y}_{n} - \nabla^{j} \mathbf{y}_{n-1}.$ The BDF formula or order k: $\sum_{j=1}^{k} \frac{1}{j} \nabla^{j} \mathbf{y}_{n+1} = hf(t_{n+1}, \mathbf{y}_{n+1})$

The case k = 1 is the BE method.

ndf15 <mark>is the method used in</mark> CLASS

