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Almost any type of research activity in cosmology will use
a Boltzmann code at some point

Computing CMB anisotropy spectra:
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Almost any type of research activity in cosmology will use
a Boltzmann code at some point

Computing matter power spectrum:
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Almost any type of research activity in cosmology will use
a Boltzmann code at some point

Computing transfer functions (e.g. initial conditions for N-body):

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

10-4 10-3 10-2 10-1 100 101

-δ
(k

,τ
) 

/ 
R

(k
,τ

in
i)

k   [h/Mpc]

density transfer functions at z=100

photons
baryons

CDM
neutrinos

J. Lesgourgues Lecture I: Introduction



Targets

Computing matter density (number count) spectra, or lensing angular spectra:
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Almost any type of research activity in cosmology will use
a Boltzmann code at some point

Computing background evolution in a given cosmological model:
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Almost any type of research activity in cosmology will use
a Boltzmann code at some point

Computing thermal history in a given cosmological model:
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Almost any type of research activity in cosmology will use
a Boltzmann code at some point

As an observer...

... you want to compute these quantities easily and e�ciently

... you may want to develop the code for outputting new observables

As a theorist...

... you may want to develop the code for incorporating new physics
and compute/understand the e↵ects of your favourite model on observables

As both...

... you want to infer constraints on cosmological parameters from a new dataset

... you want to test your own favorite model, given existing data

... you want to predict the sensitivity of a future experiment to a given parameter
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Targets

we will see how to reach the first two targets with the Cosmic Linear Anisotropy
Solving System (CLASS)

we will see how to reach the third target with a Monte Carlo code in Python,
Monte Python

good occasion to refresh our mind or understand better the underlying theory!
We will do that on-the-fly, since the structure of the CLASS code is the same as
the sections of a cosmology text book.

So there will be:

1 lectures on CLASS (numerics + underlying physics) by JL, some aspects will be
developed by JT & TT

2 lectures on Monte Pyhton (underlying statistics + use of the code) by BA

3 exercise sessions on both codes, tutored by BA, JL, JT
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Targets

Not di�cult from numerical point of view.
Ideally, basic knowledge of C and Python required.
If not, no problem: for the exercises, we will mainly copy existing structures in the
code.
Moreover C is very similar to fortran, and Python has similarities with Matlab,
Mathematica or IDL.
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Program: Day 1

DAY I : Monday 12th May

9:30-10:30 Introduction to CLASS I. JL
Brief history of Boltzmann codes.
Goals and philosophy of CLASS.

Structure of the code.
10:30-11:00 Co↵ee
11:00-11:30 Introduction to CLASS II. JL

Basic input and output.
Plotting facilities.

11:30-12:00 CLASS Exercises I. BA, JL
Looking at all possible outputs of CLASS.

Vizualizing them using the CLASS Plotting Unit, Gnuplot,
Matlab, or one’s own favorite plotting software.

12:00-13:30 Lunch break
13:30-15:00 Cosmological parameter extraction from data. BA

Overview of the main methods and existing codes.
15:00-15:30 CLASS Exercises I. BA, JL

Continuation of the morning session.
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CLASS: Lecture I

Introduction to CLASS

Motivations and goals of CLASS

The philosophy of CLASS: how to achieve friendliness and flexibility

Overall structure of the code

Input file/parameters

Output files

Next lectures will describe the modules one-by-one: background, thermodynamics,
perturbations, etc.
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Brief history of Boltzmann codes

1995: Bertschinger releases the COSMICS package in f77. Contains Ma &
Bertschinger (astro-ph/9506072) equations in synchronous gauge, Peebles
recombination. Integration of Boltzmann eq. for photons/neutrinos till
` ⇠ 2500.

1996: Seljak & Zaldarriaga add a few functions for computing the source
functions and convolve them with Bessel functions. New code much faster,
released as CMBFAST.

CMBFAST improved: RECFAST recombination, open/closed, lensing, but
structure of the code becomes complicated.

1999: Lewis et al. cut CMBFAST in pieces and reorganize them di↵erently in
f90 in CAMB. Improved expressions for sources, initial conditions, lensing, etc.

2003: Doran does a similar work of reorganization in C++: CMBEASY

later: CAMB maintained and improved over the years; others not.
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What would be expected from a new Boltzmann code?

Three goals of the Cosmic Linear Anisotropy Solving System (CLASS):

1 Friendly and flexible: should be easy to compile, to pass input parameters, to
understand the code, and to modify it (extended cosmological scenarios, new
observables).

2 Accurate: need more and more precision. Analyzing Planck and WMAP data
required very di↵erent accuracy settings. Before, CAMB precision could only be
calibrated w.r.t itself. CLASS played important role in pushing precision to
Planck level. Similar e↵orts in the future (LSS, next CMB satellite, 21cm, etc.)

3 Fast: for parameter extraction (Metropolis-Hastings, Multinest, Cosmo
Hammer, grid-base methods). Typical project: 10’000 to 1’000’000 executions
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The philosophy of class

Our e↵orts for ensuring flexibility and friendliness in
CLASS, summarised in 14 key points
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Friendliness and flexibility in 14 points

1. Written in plain C with no external libraries

C is free, di↵use, easy, fast (more than C++). Self-contained and ready to install,
straightforward to compile.

2. Input parameters are “interpreted”

Some basic logic has been incorporated in the code. Easy to elaborate further.

Examples: • expects only one out of {H0, h, 100⇥ ✓s}, otherwise complains;
• missing ones inferred from given one
• same with {Tcmb or ⌦� , !�}, or with {⌦cdm, !cdm}, {⌦b, !b}...

3. Perturbation equations and notations taken literally from well-known Ma &
Bertschinger (astro-ph/9506072) paper ...

... rather than specific notations of one given group, or mixed notations from various
origins.

For non-flat universes we found and published the simplest possible generalisation of
Ma & Bertschinger notations, (arXiv:1305.3261).
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Friendliness and flexibility in 14 points

4. Code intensively documented

As many comment lines as C lines

5. Easy units

All important variables are either dimensionless or in Mpcn

6. No hard coding, for example:

• Never write a sampling step scheme in physical units; code infers sampling as given
fraction of dimensionless physical quantites;
• Never write the index of an array as an integer; indexing down automatically and
internally by the code; use symbolic index names;

7. No global variables

All variables passed as arguments of functions. Important for readability and
parallelisation.
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Friendliness and flexibility in 14 points

8. Clear modular structure

Dinstinct modules with separate physical tasks. No duplicate equations.

E.g.: Friedmann equation appears in one single place. Same for linearised Einstein
equations. Ideal for implementing modified gravity theories.

1. input.c
2. background.c
3. thermodynamics.c
4. perturbations.c
5. primordial.c
6. nonlinear.c
7. transfer.c
8. spectra.c
9. lensing.c

10. output.c

9. All precision variables grouped in one single place (input.c), and even inside a
single structure ‘precision’

There are... many. True for any code, but they are usually hidden and spread!
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Friendliness and flexibility in 14 points

10. Given “ingredient” always implemented between brackets, in zone switched by a
flag

• adding new physics does not slow down the code or compromise its readability.
• incentive to add lots of new things even if rarely used, with no drawback.
• with a search, one can localise all the parts of the code related to a given ingredient.

Examples: if (has_fld == TRUE) {...}
if (has_cmb_lensing == TRUE) {...}

11. Adding new ingredient...

... can be done by searching for occurrence of another similar ingredient,
copy/pasting, and adapting the new lines.

Example: if you want to add a new Dark Energy component, you may search for
‘_fld’, duplicate all corresponding lines, change ‘_fld’ into e.g. ‘_myde’, and adapt the
physical equations.
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Friendliness and flexibility in 14 points

12. Error management

In principle CLASS never crashes. In case of problem, it returns an error message, with
a well-documented error (line, function, what caused the crash, suggestions on how to
avoid it). Most of this message is generated automatically by the code.

13. Version history

Old versions can always be downloaded. In most cases, new versions feature new
ingredients and avoid (whenever possible) to modify or erase the old ones. Try to
develop in such way that modifications to an old version can still be pasted in a new
version (as much as possible).

14. Git repository and GitHub website.

The code can be downloaded as a .tar.gz, or as a git repository. Then, user can
develop his own modification with the advantage of git (branching, memory of
changes...); or merge his changes with a newer version almost automatically; or submit
his modifications to the CLASS team in view of an easy merging with the public
version.
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Structure of the code

The directory class/ contains subdirectories:

include/ # header files (*.h) containing declarations
source/ # the 10 important modules of CLASS
main/ # main CLASS function: short , just calls 10 modules
test/ # other main functions for testing part of the code
tools/ # auxiliary pieces of codes (numerical methods)
output/ # output files
python/ # python wrapper of CLASS
cpp/ # C++ wrapper of CLASS
build/ # binary files created at compilation

plus examples of input files, README, Makefile, and few other directories containing
ancillary data or external code
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Structure of the code

In CLASS, what is a module?

a file include/xxx.h containing some declarations

a file source/xxx.c containing some functions

each module is a associated with a structure xx, containing all what other
modules need to know, and nothing else

some fields in this structure are filled in the input.c module (input parameters
relevant for this module)

all other fields are filled by a function xxx_init(...)

“executing a module” ⌘ calling xxx_init(...)
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Structure of the code

List of structures associated to modules:

module structure ab. * main content

input.c precision pr ppr all precision parameters
background.c background ba pba background quantities as funct. of ⌧
thermodynamics.c thermodynamics th pth thermo. quantities as funct. of z
perturbations.c perturbs pt ppt source functions S(k, t)
primordial.c primordial pm ppm primordial spectra P(k)
nonlinear.c nonlinear nl pnl non-linear corrections ↵NL(k, ⌧)
transfer.c transfers tr ptr transfer functions �l(k)
spectra.c spectra sp psp linear and/or non-linear P (k, z), C`’s
lensing.c lensing le ple lensed C`’s
output.c output op pop description of output format
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Structure of the code

Each module contains:

a function xxx_init(...) filling the structure xx

a function xxx_free(...) freeing all the memory allocated to this structure

some functions xxx_external_1(...), ..., xxx_external_n(...) that can be
called from other modules (e.g. to read correctly or interpolate the content of
the structure xx)

some functions xxx_internal_1(...), ..., xxx_internal_m(...) that are
called only inside the module, within xxx_init(...)

Following order always respected in xxx.c:

xxx_external_1 (...)
...
xxx_external_n (...)
xxx_init (...)
xxx_free (...)
xxx_internal_1 (...)
...
xxx_internal_m (...)

Remark: a module in the CLASS code is very similar to a “class” in C++. We enjoy
the structure of C++ and the speed of C.
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Structure of the code

The main() function of CLASS located in main/class.c only contains:

int main() {
input_init(pfc ,ppr ,pba ,pth ,ppt ,ptr ,ppm ,psp ,pnl ,ple ,pop);
background_init(ppr ,pba);
thermodynamics_init(ppr ,pba ,pth);
perturb_init(ppr ,pba ,pth ,ppt);
primordial_init(ppr ,ppt ,ppm);
nonlinear_init(ppr ,pba ,pth ,ppt ,ppm ,pnl);
transfer_init(ppr ,pba ,pth ,ppt ,pnl ,ptr);
spectra_init(ppr ,pba ,ppt ,ppm ,pnl ,ptr ,psp);
lensing_init(ppr ,ppt ,psp ,pnl ,ple);
/* all calculations done , free the structures */

lensing_free(ple);
spectra_free(psp);
transfer_free(ptr);
nonlinear_free(pnl);
primordial_free(ppm);
perturb_free(ppt);
thermodynamics_free(pth);
background_free(pba);

}
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The input module

source/input.c
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Input

./class can take two input files *.ini and *.pre:

>./class my_model.ini some_precision.pre

But one is enough. Syntax:

h = 0.7
T_cmb = 2.726 # comment
output = tCl , pCl
more comments , ignored because there is no equal sign
# comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed fixed to default, i.e. the most reasonable or
minimalistic choice

All possible input parameters and details on the syntax explained in
explanatory.ini

This is only a reference file; we advise you never to modify it, but rather to copy
it and reduce it to a shorter and more friendly file.

For basic usage: explanatory.ini ⌘ full documentation of the code
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Input

For instance, we can create a very short file lcdm.ini:

******************************
* CLASS input parameter file *
******************************
----> background parameters:
H0 = 72.
omega_b = 0.0266691
omega_cdm = 0.110616
----> thermodynamics parameters:
z_reio = 10.
----> define primordial perturbation spectra:
A_s = 2.3e-9
n_s = 1.
----> define which perturbations should be computed:
output = tCl , pCl
----> parameters for the output spectra:
l_scalar_max = 2500
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Input

How does the input module works?
Three essential functions:

input_init_from_arguments ()

input_init ()

input_read_parameters ()
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Input

(1) input_init_from_arguments(argc,argv,...)

reads the input file(s) *.ini, (*.pre)

identifies known names associated with values, and store them in a structure
called file_content with fields name, value, e.g.:

struct file_content fc;
fc.name [0] = "h"; fc.value [0] = "0.68";
fc.name [1] = "Omega_b"; fc.value [1] = "0.04";
fc.name [2] = "omega_cdm"; fc.value [2] = "0.12";
fc.name [3] = "modes"; fc.value [3] = "s,t";
...

calls input_init(&fc,...)
or equivalently:

struct file_content * pfc;
pfc = &fc;
input_init(pfc ,...)
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Input

(2) input_init(pfc,...)

eventually runs a shooting algorithm, as will be explained in two slides.

calls input_read_parameters(pfc, ...), the function in charge of defining all
input parameters.

These are located in:

precision structure (pr) for precision parameters

beginning of each structure (ba, th, pt, ...) for cosmological parameters
and parameters describing what needs to be computed

Hence the full list of arguments is
input_read_parameters(pfc,ppr,pba,pth,ppt,ptr,ppm,psp,pnl,ple,pop,errmsg)
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Input

(3) input_read_parameters(pfc,...)

initialises all parameters with default values with input_default_params() and
input_default_precision()

tries to read all existing parameters in the file content

check if it can make sense of them (e.g. no redundant information)

eventually overwrites default values

Contains some basic logic, and a few simple analytical formula, e.g. ⌦i = !i/h
2

This is not enough for parameters which cannot be treated with analytic formulas!
E.g. 100⇥ ✓s cannot be converted analytically into h! Other examples:

target parameter unknown parameter
100⇥ ✓s h
⌦dcdm ⇢inidcdm
�8 As

Requires a shooting method !
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Input

Full sequence when CLASS called with input files:

1 input_init_from_argument(..) : reads file, and fills fc

2 input_init(pfc,...) :

3 check if there are target/unknow parameters

4 if yes, shooting: several attempts for “unknown parameters” followed by a
mini-run of beginning of CLASS, until “target parameters” are reached

5 now, all parameters are known

6 calls input_read_parameters(..)

Full sequence when CLASS is called inside another code (wrapper):

Same except first step:

1 create and fill a structure fc

2 then call normally input_init(plc,...)

...
Hence the same logic is used in wrappers and on-line executions!!
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Input

Essential input parameters controlling the output (see details in explanatory.ini):

modes = s,t
ic = ad, cdi , bi, nid , niv
lensing = yes
nonlinear = halofit
output = tCl , pCl , lCl , mPk , mTk , vTk , nCl , sCl

l_max_scalars =2500
l_max_tensors =500
l_max_lss = 1000
P_k_max_h/Mpc = 0.2
#P_k_max_1/Mpc =
z_pk = 0 #or 1,2,10

root = output/test_ #default: output/<ini_file >##_

headers = yes , no
format = class , camb
write parameters = yes , no
write warnings = no

verbose_xxx = 1
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The output module

source/output.c
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The output module

Called in the last place by main/class.c to write all requested output in files. Only
writing, no physics, no manipulation of tables stored in other modules. Uses external
interpolation functions of other modules, e.g.

spectra_cl_at_l (...);
lensing_cl_at_l (...);
spectra_pk_at_z (...);
spectra_pk_nl_at_z (...);
...

If CLASS embedded in another code, same information is obtained by directly calling
such functions.
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The output module

Following files created (or not) automatically (here we assume that root=test_):

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when di↵erent
i.c. requested

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when di↵erent
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when di↵erent
i.c. requested

if pk or tk requested at di↵erent redhsift, several files, with extra su�x _z0,
_z1, etc.

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.
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The output module

Following files created (or not) automatically (here we assume that root=test_):

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when di↵erent
i.c. requested

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when di↵erent
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when di↵erent
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if pk or tk requested at di↵erent redhsift, several files, with extra su�x _z0,
_z1, etc.

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.
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Plotting

Whatever software is fine: gnuplot, python, matlab, IDL...

We provide scripts:

in python using gnuplot: the old Class Plotting Unit CPU

in python using matplotlib: the new Class Plotting Unit CPU.py

in matlab: the new plot_CLASS_output.m
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Plotting

E.g. to plot total E-mode CEE
l polarisation in output/test_cl_lensed.dat:

# dimensionless total [l(l+1)/2pi] C_l’s
# for l=2 to 3000, i.e. number of multipoles equal to 2999
#
# -> if you prefer output in CAMB/HealPix/LensPix units/

order , set ’format ’ to ’camb’ in input file
# -> if you don’t want to see such a header , set ’headers ’

to ’no’ in input file
#
# l TT EE TE BB phiphi Tphi Ephi

you could do:

python CPU.py -h
python CPU.py output/test_cl_lensed.dat -s ’EE’

or inside matlab:

plot_CLASS_output(’output/test_cl_lensed.dat’,’EE’)

J. Lesgourgues Lecture I: Introduction



Exercises I

All these exercises consist in running CLASS with the correct set of input parameters
(cosmological parameters are unimportant), and plotting its di↵erent outputs with
CPU.py, or plot_CLASS_output.m, or with your own favorite software.

Ia

Check the di↵erence between the lensed and unlensed CTT
l of scalars, to see e↵ect of

smoothing of the peak contrast, and extra damping.

Ib

Check the di↵erence between the lensed and unlensed CBB
l of tensors, to see that B

modes are dominated by lensing at least on small scales. Use r = 0.2 and like in
BICEP results!
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Exercises I

Ic

Check the di↵erence between the unlensed CTT
l of scalar modes for adiabatic and

CDM isocurvature (CDI) initial conditions (with index ncdi = 1) , to check that peaks
are suppressed in amplitude and shifted in scale. Do the same with NID isocurvature
modes (with index nnid = 1) to check that the suppression in amplitude is less
pronounced and the phase of NID and CDI are di↵erent.

Id

Check the di↵erence between the linear and non-linear matter power spectrum at
z = 0 and z = 2, to see that at low redshift non-linear corrections are present on
larger scales.
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