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Homogeneous cosmology

treated by the module background.c. So this lecture will refer mainly to the
content of input/background.h, source/background.c, and to the structure
referred as ba:

struct background ba;

with fields ba.blabla, or through the pointer pba:

struct background * pba;

with fields pba->blabla.

the goal of this module is to solve the background evolution and store the
results in a table. It should provide a function able to interpolate within this
table at any value of time.

other modules should be able to know all background quantities (densities,
pressures, Hubble rate, angular/luminosity distances, etc.) at any given time or
redshift.
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Homogeneous cosmology

at the end of this lecture, we also see who to plot the background evolution.

10-15

10-10

10-5

100

105

1010

1015

 1  10  100  1000  10000

de
ns

iti
es

 (
M

pc
2 )

conformal time (Mpc)

radiation
matter

Lambda

Julien Lesgourgues Lecture II: Background



Units

Units assume c = 1 and all quantities in Mpcn

times and distances are in Mpc: conformal time τ in Mpc, H = a′

a2
in Mpc−1.

all densities and pressures appearing in the code are in fact some rescaled
variables:

ρ = 8πG
3
ρphysical, p = 8πG

3
pphysical, in Mpc−2.

So the Friedmann equation reads

H =

(∑
i

ρi −
K

a2

)1/2

with the curvature K also in Mpc−2.
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The function background functions()

Most quantities can be immediately inferred from a given value of a without
integrating any differential equations:

ρi = Ω0
iH

2
0

(
a
a0

)−3(1+wi)

pi = wiρi

H =
(∑

i ρi −
K
a2

)1/2
H′ =

(
− 3

2

∑
i(ρi + pi) + K

a2

)
a

ρcrit = H2

Ωi = ρi/ρcrit

These quantities are all returned by a function background_functions(pba,a,...)
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What shall we integrate?

But to get them as a function of time we need to integrate one differential equation:

a′ = a2H

Then we know a(τ), and hence all previous quantities as a function of τ .

Other quantities requiring an integration over time:

proper time: t′ = a (since dτ = dt/a)

comoving sound horizon: r′s = cs, since rs =
∫ τ0
τini

csdτ , with a squared sound

speed in the photon+baryon+electron fluid

c2s =
δpγ

δργ + δρb
=

1

3(1 + [3ρb/4ργ ])
.

linear growth factor of density perturbations in minimal ΛCDM model (filled
with dust), D′ = 1/(aH2) (such that δm ∝ D).
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How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}
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How can we classify background variables?

Reflected by arguments of

background_functions(pba , pvecback_B , format , pvecback)
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Input background parameters

In the *.ini file, the user may pass:

Hubble: h or H0

Photons: T_cmb or Omega_g or omega_g

Ultra-relativvistic relics: N_ur or Omega_ur or omega_ur

CDM: Omega_cdm or omega_cdm

Non-cold DM: ncdm : lots of possible input, see dedicated lectures

Decaying CDM plus its relat. decay product: Omega_dcdmdr or omega_dcdmdr

Curvature: Omega_k

Cosmological constant: Omega_Lambda

Fluid: Omega_fld, w0_fld, wa_fld, cs2_fld (assuming CLP:
w = w0 + wa(1− a/a0) and δp = c2sδρ)
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Input background parameters

Just one convention to remember !!!!

One of Omega_Lambda or Omega_fld must be left unspecified, to let the code match
with H0:

H2
0 =

∑
i

ρ0i −K/a20

If the two are passed, there is an error message.

All details on the syntax and on these rules are explicitly written in the comments of
explanatory.ini
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Remark on the component called ”fluid”

Remark on the fluid:

ρi = Ω0
iH

2
0

(
a
a0

)−3(1+wi)
is only valid when wi = constant.

for w = w0 + wa(1− a/a0), an analytic integration of the energy conservation
equation gives

ρi = Ω0
iH

2
0

(
a

a0

)−3(1+w0+wa)

e3wa(a/a0−1)

Finally there is a parameter background_verbose=... (one verbose parameter for
each module). 0 gives no output at all, 1 the standard output that you see by default,
etc.
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External function in the background module

background_init() solves the differential equations once and for all, and stores
in the background structure some tabulated values τi, zi, and all quantities
{Ai}, {Bi}, {Ci}.

background_free() frees the memory allocated for this table.

background_at_tau(pba, tau,...) interpolates inside this table and returns
{A(τ)}, {B(τ)}, {C(τ)}.
background_tau_of_z(pba, z, &tau) returns τ(z), can be useful just before
calling background_at_tau(pba, tau,...)
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Internal function in the background module

background_indices(...) allocates dynamically all indices (see next slides)

background_functions(pba, pvecback_B,...) gets {B} and returns {A}.
background_solve(...) integrates the differential system for {B}, {C}
variables

background_initial_conditions(...) assigns initial conditions {Bini},
{Cini} to this system, e.g. a(τini) assuming pure radiation domination since Big
Bang

background_derivs(z,...) contains the differential eqns. dy[i] = f(y[j])

These functions call auxiliary functions in tools/:

for array interpolation, tools/array.c (contains functions with all operations
on arrays: interpolation, extrapolation, integration, derivation, smoothing, ...)

for the integration of Ordinary Differential Equations, generic_integrator(),
which can be set either to rkck or ndf15 (see dedicated lecture). We will find
this feature anytime we need to integrate ODE (also in thermodynamics and in
perturbations).
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Dynamical indexing

Indexing is very generic in CLASS, same rules apply everywhere.

Here, we want to define the indices of a vector of background quantities (stored
in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
common/background.h (more precisely, inside the structure background, because
these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.
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Dynamical indexing

In include/background.h:

struct background {

/** input parameters with assigned in the input module*

*/

double Omega0_cdm;

...

/** flags and indices **/

int has_cdm; // can take values _TRUE_ or _FALSE_

....

int index_bg_rho_cdm;

...

int bg_size;

/** interpolation table **/

double * background_table;

}
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Dynamical indexing

In source/background.c, the function background_indices() called at the
beginning of background_init() assigns numerical value to indices, that the user will
never need to know (quantities always written symbolically as
y[pba->index_bg_rho_cdm])

int background_indices(pba ,...) {

/* initialize all flags */

if (pba ->Omega0_cdm != 0.)

pba ->has_cdm = _TRUE_;

...

/* initialize all indices */

index_bg =0;

class_define_index(pba ->index_bg_rho_cdm ,

pba ->has_cdm ,

index_bg ,

1);

class_define_index(pba ->index_bg_rho_fld ,

pba ->has_fld ,

index_bg ,

1);

...

pba ->bg_size = index_bg;

}
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Getting background quantities from outside

Calling background quantitites from another module is then very simple: e.g., in the
perturbation module:

double * pvecback;

class_alloc(pvecback ,

pba ->bg_size*sizeof(double),

ppt ->error_message);

...

class_call(background_at_tau(pba ,tau ,... ,... ,... , pvecback),

pba ->error_message ,

ppt ->error_message);

/* We want here to compute the total background density */

if (pba ->has_cdm == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_cdm ];

}

if (pba ->has_fld == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_fld ];

p_tot += pvecback[pba ->index_bg_p_fld ];

}

...

5th argument can be: pba->long_info, pba->normal_info or pba->short_info
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pba ->bg_size*sizeof(double),

ppt ->error_message);

...

class_call(background_at_tau(pba ,tau ,... ,... ,... , pvecback),

pba ->error_message ,

ppt ->error_message);

/* We want here to compute the total background density */

if (pba ->has_cdm == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_cdm ];

}

if (pba ->has_fld == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_fld ];

p_tot += pvecback[pba ->index_bg_p_fld ];

}

...

5th argument can be: pba->long_info, pba->normal_info or pba->short_info
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Full list of coded background quantities

Currently, the list of all available background quantities is:

short_info index_bg_a a
” index_bg_H H
” index_bg_H_prime H′

normal_info index_bg_rho_<i> ρ for _b, _g,_cdm,_ur,_fld,_lambda

” variables for ncdm see dedicated lecture
” index_bg_Omega_r Ωradiation

long_info index_bg_rho_crit ρcrit
” index_bg_Omega_m Ωmatter

” index_bg_conf_distance τ0 − τ = χ
” index_bg_ang_distance dA = a r
” index_bg_lum_distance dL = (1 + z)2dA
” index_bg_time proper time t
” index_bg_rs conformal sound horizon rs
” index_bg_D density growth factor of ΛCDM
” index_bg_f velocity growth factor of ΛCDM

(with r = χ, or sin(
√
Kχ)/

√
K, or sinh(

√
−Kχ)/

√
−K)
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To conclude on dynamical indexing in CLASS

These rules for flags and indices are followed everywhere in the code, with maybe 50
different lists of indices index_ab_blabla. In the background module, two such lists:

for all variables in the table ({A}, {B}, {C}),

int index_bg_a;

...

int bg_size;

declared in include/background.h inside the background structure, to be used
in other modules.

for the ODE dy[i] = f(y[j]), i.e. for variables {B}, {C},

int index_bi_a;

int index_bi_time;

int index_bi_rs;

int index_bi_growth;

int bi_size;

declared in include/background.h outside the background structure, and
erased/forgotten after the execution of background_init().
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Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):
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1. easiest: execute e.g. ./class myinput.ini including in the input file:
write background = yes

root = output/toto_

The output module will also write a file output/toto_background.dat with header:
# Table of selected background quantitites

# All densities are mutiplied by (8piG/3)

# z, proper time [Gyr], conformal time * c [Mpc], H/c [1/Mpc] (etc.)

Output easy to customise in output.c, by editing:
output_one_line_of_background(...) for the quantities to plot in each line
output_open_background_file(...) for the header (description of columns)
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2. good to know: directory test/ contains several test codes executing only part of
the main(...) function.

For instance: test/test_background.c only executes input_init(...),
background_init(...), and then outputs a table of all background quantities. Useful
also for quick debugging!
Usage:
> make test_background

> ./test_background myinput.ini

Same with test_thermodynamics.c, test_perturbations.c, test_nonlinear.c,
test_transfer.c...
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Background exercises (see exercise sheet for more details)

Exercise IIa

Reproduce this plot from the Dodelson
book Modern Cosmology, using the
plotting software of your choice.

Exercise IIb

Add a new matter species with an equation of state p = wρ. Visualise its evolution
with time. Provoke an error on purpose, to check the error format.

Julien Lesgourgues Lecture II: Background



Error management in class

By following a few general rules, we get automatically some very informative error
messages like:

Error in thermodynamics_init

=>thermodynamics_init(L:292) :error in

thermodynamics_helium_from_bbn(ppr ,pba ,pth);

=>thermodynamics_helium_from_bbn(L:1031) :condition (omega_b

> omegab[num_omegab -1]) is true; You have asked for an

unrealistic high value omega_b = 7.350000e-02. The

corrresponding value of the primordial helium fraction

cannot be found in the interpolation table. If you

really want this value , you should fix YHe to a given

value rather than to BBN

We only wrote the piece starting with “You have asked...”. All the rest was
generated automatically by the code. This follows from following everywhere 5 rules.
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Error management in class

Rule 1:

All functions are of type int, and return either _SUCCESS_ or _FAILURE_ (defined
internally in include/common.h: #define _SUCCESS_ 0 , #define _FAILURE_ 1 )

int function(input , &output) {

...

if (something goes wrong) return _FAILURE_;

...

return _SUCCESS_;

}
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Error management in class

Rule 2:

All functions are called with the macro class_call(.,.,.) (all macros
class_xxx(...) are defined in include/common.h):

class_call(function(input , &output),

error_message_from_function ,

error_message_output);

This is simply a short-cut for

if (function == _FAILURE_) {

ErrorMsg Transmit_Error_Message;

sprintf(Transmit_Error_Message ,"%s(L:%d) : error in %s;\

n=>%s",__func__ ,__LINE__ ,#function ,

error_message_from_function);

sprintf(error_message_output ,"%s",Transmit_Error_Message

);

return _FAILURE_;

}
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Error management in class

Rule 3:

Each of the 9 main structures xx has a field called error_message. Any function in
the module xxx.c is called xxx_something() and writes its error message in
xx.error_message (if pxx is a pointer to xx, in pxx->error_message).

So if we are in perturb_init() and we call perturb_indices() we write:

class_call(perturb_indices (...,ppt),

ppt ->error_message ,

ppt ->error_message);

But if we are in perturb_init() and we call background_at_tau() we write:

class_call(background_at_tau (...,pba),

pba ->error_message ,

ppt ->error_message);
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Error management in class

Rule 4:

Whenever an error could occur, we first write a test with the macro
class_test(.,.,.):

class_test(condition , error_message , "Some text");

or

class_test(condition , error_message , "Some text and numbers

%d %e",n,x);

Example:

class_test(num_points == 0,

ppt ->error_message ,

"this might be caused by ...");

step = (max -min)/(( double)num_points);

In the text, no need to say in which function we are, or to write that the number of
points is zero, or to put a \n, all this is done automatically.
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Error management in class

Rule 5:

Always allocate memory with the macros class_alloc(), class_calloc(),
class_realloc().

Instead of

malloc(parray , N*sizeof(double));

use

class_alloc(parray , N*sizeof(double), pxx ->error_message);

If allocation fails (N too big, null or negative), the function will automatically return a
_FAILURE_ and the code will return an appropriate error message:

Error running background_init

=>background_init(L:537):error in background_solve(ppr ,pba);

=>background_solve(L:1303):could not allocate pvecback with

size -8
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Error management in class

Final remark: in main/class.c there is no “higher level” so the 10 initialisation
functions are called like e.g.:

int main(int argc , char **argv) {

....

if (background_init (&pr ,&ba) == _FAILURE_) {

printf("\n\nError running background_init \n=>%s\n",ba.

error_message);

return _FAILURE_;

}

...

But when CLASS is called as a function from another code (e.g. Monte Python or
test/test_loops.c) we can use the standard way:

int class (...., ErrorMsg errmsg) {

....

class_call(background_init(ppr ,pba),

pba ->error_message ,

errmsg);

...

Then, CLASS never crashes (in principle...), it only returns class(...)== _FAILURE_
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