
Lecture II: The Background

Julien Lesgourgues

EPFL & CERN

London, 13.05.2014

Julien Lesgourgues Lecture II: Background

Homogeneous cosmology

treated by the module background.c. So this lecture will refer mainly to the
content of input/background.h, source/background.c, and to the structure
referred as ba:

struct background ba;

with fields ba.blabla, or through the pointer pba:

struct background * pba;

with fields pba->blabla.

the goal of this module is to solve the background evolution and store the
results in a table. It should provide a function able to interpolate within this
table at any value of time.

other modules should be able to know all background quantities (densities,
pressures, Hubble rate, angular/luminosity distances, etc.) at any given time or
redshift.

Julien Lesgourgues Lecture II: Background

Homogeneous cosmology

treated by the module background.c. So this lecture will refer mainly to the
content of input/background.h, source/background.c, and to the structure
referred as ba:

struct background ba;

with fields ba.blabla, or through the pointer pba:

struct background * pba;

with fields pba->blabla.

the goal of this module is to solve the background evolution and store the
results in a table. It should provide a function able to interpolate within this
table at any value of time.

other modules should be able to know all background quantities (densities,
pressures, Hubble rate, angular/luminosity distances, etc.) at any given time or
redshift.

Julien Lesgourgues Lecture II: Background

Homogeneous cosmology

treated by the module background.c. So this lecture will refer mainly to the
content of input/background.h, source/background.c, and to the structure
referred as ba:

struct background ba;

with fields ba.blabla, or through the pointer pba:

struct background * pba;

with fields pba->blabla.

the goal of this module is to solve the background evolution and store the
results in a table. It should provide a function able to interpolate within this
table at any value of time.

other modules should be able to know all background quantities (densities,
pressures, Hubble rate, angular/luminosity distances, etc.) at any given time or
redshift.

Julien Lesgourgues Lecture II: Background

Homogeneous cosmology

at the end of this lecture, we also see who to plot the background evolution.

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

Julien Lesgourgues Lecture II: Background

Units

Units assume c = 1 and all quantities in Mpcn

times and distances are in Mpc: conformal time τ in Mpc, H = a′

a2
in Mpc−1.

all densities and pressures appearing in the code are in fact some rescaled
variables:

ρ = 8πG
3
ρphysical, p = 8πG

3
pphysical, in Mpc−2.

So the Friedmann equation reads

H =

(∑
i

ρi −
K

a2

)1/2

with the curvature K also in Mpc−2.

Julien Lesgourgues Lecture II: Background

Units

Units assume c = 1 and all quantities in Mpcn

times and distances are in Mpc: conformal time τ in Mpc, H = a′

a2
in Mpc−1.

all densities and pressures appearing in the code are in fact some rescaled
variables:

ρ = 8πG
3
ρphysical, p = 8πG

3
pphysical, in Mpc−2.

So the Friedmann equation reads

H =

(∑
i

ρi −
K

a2

)1/2

with the curvature K also in Mpc−2.

Julien Lesgourgues Lecture II: Background

Units

Units assume c = 1 and all quantities in Mpcn

times and distances are in Mpc: conformal time τ in Mpc, H = a′

a2
in Mpc−1.

all densities and pressures appearing in the code are in fact some rescaled
variables:

ρ = 8πG
3
ρphysical, p = 8πG

3
pphysical, in Mpc−2.

So the Friedmann equation reads

H =

(∑
i

ρi −
K

a2

)1/2

with the curvature K also in Mpc−2.

Julien Lesgourgues Lecture II: Background

The function background functions()

Most quantities can be immediately inferred from a given value of a without
integrating any differential equations:

ρi = Ω0
iH

2
0

(
a
a0

)−3(1+wi)

pi = wiρi

H =
(∑

i ρi −
K
a2

)1/2
H′ =

(
− 3

2

∑
i(ρi + pi) + K

a2

)
a

ρcrit = H2

Ωi = ρi/ρcrit

These quantities are all returned by a function background_functions(pba,a,...)

Julien Lesgourgues Lecture II: Background

What shall we integrate?

But to get them as a function of time we need to integrate one differential equation:

a′ = a2H

Then we know a(τ), and hence all previous quantities as a function of τ .

Other quantities requiring an integration over time:

proper time: t′ = a (since dτ = dt/a)

comoving sound horizon: r′s = cs, since rs =
∫ τ0
τini

csdτ , with a squared sound

speed in the photon+baryon+electron fluid

c2s =
δpγ

δργ + δρb
=

1

3(1 + [3ρb/4ργ])
.

linear growth factor of density perturbations in minimal ΛCDM model (filled
with dust), D′ = 1/(aH2) (such that δm ∝ D).

Julien Lesgourgues Lecture II: Background

What shall we integrate?

But to get them as a function of time we need to integrate one differential equation:

a′ = a2H

Then we know a(τ), and hence all previous quantities as a function of τ .
Other quantities requiring an integration over time:

proper time: t′ = a (since dτ = dt/a)

comoving sound horizon: r′s = cs, since rs =
∫ τ0
τini

csdτ , with a squared sound

speed in the photon+baryon+electron fluid

c2s =
δpγ

δργ + δρb
=

1

3(1 + [3ρb/4ργ])
.

linear growth factor of density perturbations in minimal ΛCDM model (filled
with dust), D′ = 1/(aH2) (such that δm ∝ D).

Julien Lesgourgues Lecture II: Background

What shall we integrate?

But to get them as a function of time we need to integrate one differential equation:

a′ = a2H

Then we know a(τ), and hence all previous quantities as a function of τ .
Other quantities requiring an integration over time:

proper time: t′ = a (since dτ = dt/a)

comoving sound horizon: r′s = cs, since rs =
∫ τ0
τini

csdτ , with a squared sound

speed in the photon+baryon+electron fluid

c2s =
δpγ

δργ + δρb
=

1

3(1 + [3ρb/4ργ])
.

linear growth factor of density perturbations in minimal ΛCDM model (filled
with dust), D′ = 1/(aH2) (such that δm ∝ D).

Julien Lesgourgues Lecture II: Background

What shall we integrate?

But to get them as a function of time we need to integrate one differential equation:

a′ = a2H

Then we know a(τ), and hence all previous quantities as a function of τ .
Other quantities requiring an integration over time:

proper time: t′ = a (since dτ = dt/a)

comoving sound horizon: r′s = cs, since rs =
∫ τ0
τini

csdτ , with a squared sound

speed in the photon+baryon+electron fluid

c2s =
δpγ

δργ + δρb
=

1

3(1 + [3ρb/4ργ])
.

linear growth factor of density perturbations in minimal ΛCDM model (filled
with dust), D′ = 1/(aH2) (such that δm ∝ D).

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.

{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.

{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

What we said before is model-dependent !!! It is not true that all densities are
analytical functions of ρi(a) (e.g. with quintessence, scalar-tensor gravity, decaying
dark matter, etc.)

Since v2.3, background module written in model-independent way.

In general, three types of parameters:

{A} which can be expressed directly as a function of some variables {B}.
{B}, which need to be integrated over time.
{C}, which also need to be integrated but are not used to compute {A}.

ΛCDM and many simple extensions:

{A} = {ρi, pi, H, ..., }
{B} = {a}
{C} = {t, rs, D}

Exemple of extended cosmology with quintessence φ (see Thomas’s lecture):

{A} = {ρi, pi, H, ..., Vφ, ρφ, pφ}
{B} = {a, φ, φ′}

Exemple of decaying dark matter with non-trivial differential equation giving ρdm(t):

{A} = {ρi, pi, H, ...}
{B} = {a, ρdm}

Julien Lesgourgues Lecture II: Background

How can we classify background variables?

Reflected by arguments of

background_functions(pba , pvecback_B , format , pvecback)

Julien Lesgourgues Lecture II: Background

Input background parameters

In the *.ini file, the user may pass:

Hubble: h or H0

Photons: T_cmb or Omega_g or omega_g

Ultra-relativvistic relics: N_ur or Omega_ur or omega_ur

CDM: Omega_cdm or omega_cdm

Non-cold DM: ncdm : lots of possible input, see dedicated lectures

Decaying CDM plus its relat. decay product: Omega_dcdmdr or omega_dcdmdr

Curvature: Omega_k

Cosmological constant: Omega_Lambda

Fluid: Omega_fld, w0_fld, wa_fld, cs2_fld (assuming CLP:
w = w0 + wa(1− a/a0) and δp = c2sδρ)

Julien Lesgourgues Lecture II: Background

Input background parameters

Just one convention to remember !!!!

One of Omega_Lambda or Omega_fld must be left unspecified, to let the code match
with H0:

H2
0 =

∑
i

ρ0i −K/a20

If the two are passed, there is an error message.

All details on the syntax and on these rules are explicitly written in the comments of
explanatory.ini

Julien Lesgourgues Lecture II: Background

Remark on the component called ”fluid”

Remark on the fluid:

ρi = Ω0
iH

2
0

(
a
a0

)−3(1+wi)
is only valid when wi = constant.

for w = w0 + wa(1− a/a0), an analytic integration of the energy conservation
equation gives

ρi = Ω0
iH

2
0

(
a

a0

)−3(1+w0+wa)

e3wa(a/a0−1)

Finally there is a parameter background_verbose=... (one verbose parameter for
each module). 0 gives no output at all, 1 the standard output that you see by default,
etc.

Julien Lesgourgues Lecture II: Background

Remark on the component called ”fluid”

Remark on the fluid:

ρi = Ω0
iH

2
0

(
a
a0

)−3(1+wi)
is only valid when wi = constant.

for w = w0 + wa(1− a/a0), an analytic integration of the energy conservation
equation gives

ρi = Ω0
iH

2
0

(
a

a0

)−3(1+w0+wa)

e3wa(a/a0−1)

Finally there is a parameter background_verbose=... (one verbose parameter for
each module). 0 gives no output at all, 1 the standard output that you see by default,
etc.

Julien Lesgourgues Lecture II: Background

External function in the background module

background_init() solves the differential equations once and for all, and stores
in the background structure some tabulated values τi, zi, and all quantities
{Ai}, {Bi}, {Ci}.

background_free() frees the memory allocated for this table.

background_at_tau(pba, tau,...) interpolates inside this table and returns
{A(τ)}, {B(τ)}, {C(τ)}.
background_tau_of_z(pba, z, &tau) returns τ(z), can be useful just before
calling background_at_tau(pba, tau,...)

Julien Lesgourgues Lecture II: Background

External function in the background module

background_init() solves the differential equations once and for all, and stores
in the background structure some tabulated values τi, zi, and all quantities
{Ai}, {Bi}, {Ci}.
background_free() frees the memory allocated for this table.

background_at_tau(pba, tau,...) interpolates inside this table and returns
{A(τ)}, {B(τ)}, {C(τ)}.
background_tau_of_z(pba, z, &tau) returns τ(z), can be useful just before
calling background_at_tau(pba, tau,...)

Julien Lesgourgues Lecture II: Background

External function in the background module

background_init() solves the differential equations once and for all, and stores
in the background structure some tabulated values τi, zi, and all quantities
{Ai}, {Bi}, {Ci}.
background_free() frees the memory allocated for this table.

background_at_tau(pba, tau,...) interpolates inside this table and returns
{A(τ)}, {B(τ)}, {C(τ)}.

background_tau_of_z(pba, z, &tau) returns τ(z), can be useful just before
calling background_at_tau(pba, tau,...)

Julien Lesgourgues Lecture II: Background

External function in the background module

background_init() solves the differential equations once and for all, and stores
in the background structure some tabulated values τi, zi, and all quantities
{Ai}, {Bi}, {Ci}.
background_free() frees the memory allocated for this table.

background_at_tau(pba, tau,...) interpolates inside this table and returns
{A(τ)}, {B(τ)}, {C(τ)}.
background_tau_of_z(pba, z, &tau) returns τ(z), can be useful just before
calling background_at_tau(pba, tau,...)

Julien Lesgourgues Lecture II: Background

Internal function in the background module

background_indices(...) allocates dynamically all indices (see next slides)

background_functions(pba, pvecback_B,...) gets {B} and returns {A}.
background_solve(...) integrates the differential system for {B}, {C}
variables

background_initial_conditions(...) assigns initial conditions {Bini},
{Cini} to this system, e.g. a(τini) assuming pure radiation domination since Big
Bang

background_derivs(z,...) contains the differential eqns. dy[i] = f(y[j])

These functions call auxiliary functions in tools/:

for array interpolation, tools/array.c (contains functions with all operations
on arrays: interpolation, extrapolation, integration, derivation, smoothing, ...)

for the integration of Ordinary Differential Equations, generic_integrator(),
which can be set either to rkck or ndf15 (see dedicated lecture). We will find
this feature anytime we need to integrate ODE (also in thermodynamics and in
perturbations).

Julien Lesgourgues Lecture II: Background

Internal function in the background module

background_indices(...) allocates dynamically all indices (see next slides)

background_functions(pba, pvecback_B,...) gets {B} and returns {A}.
background_solve(...) integrates the differential system for {B}, {C}
variables

background_initial_conditions(...) assigns initial conditions {Bini},
{Cini} to this system, e.g. a(τini) assuming pure radiation domination since Big
Bang

background_derivs(z,...) contains the differential eqns. dy[i] = f(y[j])

These functions call auxiliary functions in tools/:

for array interpolation, tools/array.c (contains functions with all operations
on arrays: interpolation, extrapolation, integration, derivation, smoothing, ...)

for the integration of Ordinary Differential Equations, generic_integrator(),
which can be set either to rkck or ndf15 (see dedicated lecture). We will find
this feature anytime we need to integrate ODE (also in thermodynamics and in
perturbations).

Julien Lesgourgues Lecture II: Background

Dynamical indexing

Indexing is very generic in CLASS, same rules apply everywhere.

Here, we want to define the indices of a vector of background quantities (stored
in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
common/background.h (more precisely, inside the structure background, because
these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

Julien Lesgourgues Lecture II: Background

Dynamical indexing

Indexing is very generic in CLASS, same rules apply everywhere.

Here, we want to define the indices of a vector of background quantities (stored
in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
common/background.h (more precisely, inside the structure background, because
these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

Julien Lesgourgues Lecture II: Background

Dynamical indexing

Indexing is very generic in CLASS, same rules apply everywhere.

Here, we want to define the indices of a vector of background quantities (stored
in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
common/background.h (more precisely, inside the structure background, because
these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

Julien Lesgourgues Lecture II: Background

Dynamical indexing

Indexing is very generic in CLASS, same rules apply everywhere.

Here, we want to define the indices of a vector of background quantities (stored
in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
common/background.h (more precisely, inside the structure background, because
these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

Julien Lesgourgues Lecture II: Background

Dynamical indexing

Indexing is very generic in CLASS, same rules apply everywhere.

Here, we want to define the indices of a vector of background quantities (stored
in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
common/background.h (more precisely, inside the structure background, because
these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

Julien Lesgourgues Lecture II: Background

Dynamical indexing

In include/background.h:

struct background {

/** input parameters with assigned in the input module*

*/

double Omega0_cdm;

...

/** flags and indices **/

int has_cdm; // can take values _TRUE_ or _FALSE_

....

int index_bg_rho_cdm;

...

int bg_size;

/** interpolation table **/

double * background_table;

}

Julien Lesgourgues Lecture II: Background

Dynamical indexing

In source/background.c, the function background_indices() called at the
beginning of background_init() assigns numerical value to indices, that the user will
never need to know (quantities always written symbolically as
y[pba->index_bg_rho_cdm])

int background_indices(pba ,...) {

/* initialize all flags */

if (pba ->Omega0_cdm != 0.)

pba ->has_cdm = _TRUE_;

...

/* initialize all indices */

index_bg =0;

class_define_index(pba ->index_bg_rho_cdm ,

pba ->has_cdm ,

index_bg ,

1);

class_define_index(pba ->index_bg_rho_fld ,

pba ->has_fld ,

index_bg ,

1);

...

pba ->bg_size = index_bg;

}

Julien Lesgourgues Lecture II: Background

Getting background quantities from outside

Calling background quantitites from another module is then very simple: e.g., in the
perturbation module:

double * pvecback;

class_alloc(pvecback ,

pba ->bg_size*sizeof(double),

ppt ->error_message);

...

class_call(background_at_tau(pba ,tau ,... ,... ,... , pvecback),

pba ->error_message ,

ppt ->error_message);

/* We want here to compute the total background density */

if (pba ->has_cdm == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_cdm];

}

if (pba ->has_fld == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_fld];

p_tot += pvecback[pba ->index_bg_p_fld];

}

...

5th argument can be: pba->long_info, pba->normal_info or pba->short_info

Julien Lesgourgues Lecture II: Background

Getting background quantities from outside

Calling background quantitites from another module is then very simple: e.g., in the
perturbation module:

double * pvecback;

class_alloc(pvecback ,

pba ->bg_size*sizeof(double),

ppt ->error_message);

...

class_call(background_at_tau(pba ,tau ,... ,... ,... , pvecback),

pba ->error_message ,

ppt ->error_message);

/* We want here to compute the total background density */

if (pba ->has_cdm == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_cdm];

}

if (pba ->has_fld == _TRUE_) {

rho_tot += pvecback[pba ->index_bg_rho_fld];

p_tot += pvecback[pba ->index_bg_p_fld];

}

...

5th argument can be: pba->long_info, pba->normal_info or pba->short_info

Julien Lesgourgues Lecture II: Background

Full list of coded background quantities

Currently, the list of all available background quantities is:

short_info index_bg_a a
” index_bg_H H
” index_bg_H_prime H′

normal_info index_bg_rho_<i> ρ for _b, _g,_cdm,_ur,_fld,_lambda

” variables for ncdm see dedicated lecture
” index_bg_Omega_r Ωradiation

long_info index_bg_rho_crit ρcrit
” index_bg_Omega_m Ωmatter

” index_bg_conf_distance τ0 − τ = χ
” index_bg_ang_distance dA = a r
” index_bg_lum_distance dL = (1 + z)2dA
” index_bg_time proper time t
” index_bg_rs conformal sound horizon rs
” index_bg_D density growth factor of ΛCDM
” index_bg_f velocity growth factor of ΛCDM

(with r = χ, or sin(
√
Kχ)/

√
K, or sinh(

√
−Kχ)/

√
−K)

Julien Lesgourgues Lecture II: Background

To conclude on dynamical indexing in CLASS

These rules for flags and indices are followed everywhere in the code, with maybe 50
different lists of indices index_ab_blabla. In the background module, two such lists:

for all variables in the table ({A}, {B}, {C}),

int index_bg_a;

...

int bg_size;

declared in include/background.h inside the background structure, to be used
in other modules.

for the ODE dy[i] = f(y[j]), i.e. for variables {B}, {C},

int index_bi_a;

int index_bi_time;

int index_bi_rs;

int index_bi_growth;

int bi_size;

declared in include/background.h outside the background structure, and
erased/forgotten after the execution of background_init().

Julien Lesgourgues Lecture II: Background

To conclude on dynamical indexing in CLASS

These rules for flags and indices are followed everywhere in the code, with maybe 50
different lists of indices index_ab_blabla. In the background module, two such lists:

for all variables in the table ({A}, {B}, {C}),

int index_bg_a;

...

int bg_size;

declared in include/background.h inside the background structure, to be used
in other modules.

for the ODE dy[i] = f(y[j]), i.e. for variables {B}, {C},

int index_bi_a;

int index_bi_time;

int index_bi_rs;

int index_bi_growth;

int bi_size;

declared in include/background.h outside the background structure, and
erased/forgotten after the execution of background_init().

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

1. easiest: execute e.g. ./class myinput.ini including in the input file:
write background = yes

root = output/toto_

The output module will also write a file output/toto_background.dat with header:
Table of selected background quantitites

All densities are mutiplied by (8piG/3)

z, proper time [Gyr], conformal time * c [Mpc], H/c [1/Mpc] (etc.)

Output easy to customise in output.c, by editing:
output_one_line_of_background(...) for the quantities to plot in each line
output_open_background_file(...) for the header (description of columns)

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

1. easiest: execute e.g. ./class myinput.ini including in the input file:
write background = yes

root = output/toto_

The output module will also write a file output/toto_background.dat with header:
Table of selected background quantitites

All densities are mutiplied by (8piG/3)

z, proper time [Gyr], conformal time * c [Mpc], H/c [1/Mpc] (etc.)

Output easy to customise in output.c, by editing:
output_one_line_of_background(...) for the quantities to plot in each line
output_open_background_file(...) for the header (description of columns)

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

1. easiest: execute e.g. ./class myinput.ini including in the input file:
write background = yes

root = output/toto_

The output module will also write a file output/toto_background.dat with header:
Table of selected background quantitites

All densities are mutiplied by (8piG/3)

z, proper time [Gyr], conformal time * c [Mpc], H/c [1/Mpc] (etc.)

Output easy to customise in output.c, by editing:
output_one_line_of_background(...) for the quantities to plot in each line
output_open_background_file(...) for the header (description of columns)

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

1. easiest: execute e.g. ./class myinput.ini including in the input file:
write background = yes

root = output/toto_

The output module will also write a file output/toto_background.dat with header:
Table of selected background quantitites

All densities are mutiplied by (8piG/3)

z, proper time [Gyr], conformal time * c [Mpc], H/c [1/Mpc] (etc.)

Output easy to customise in output.c, by editing:
output_one_line_of_background(...) for the quantities to plot in each line
output_open_background_file(...) for the header (description of columns)

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

2. good to know: directory test/ contains several test codes executing only part of
the main(...) function.

For instance: test/test_background.c only executes input_init(...),
background_init(...), and then outputs a table of all background quantities. Useful
also for quick debugging!
Usage:
> make test_background

> ./test_background myinput.ini

Same with test_thermodynamics.c, test_perturbations.c, test_nonlinear.c,
test_transfer.c...

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

2. good to know: directory test/ contains several test codes executing only part of
the main(...) function.

For instance: test/test_background.c only executes input_init(...),
background_init(...), and then outputs a table of all background quantities. Useful
also for quick debugging!
Usage:
> make test_background

> ./test_background myinput.ini

Same with test_thermodynamics.c, test_perturbations.c, test_nonlinear.c,
test_transfer.c...

Julien Lesgourgues Lecture II: Background

Printing the background evolution

Two ways to produce such a plot with
the quantitates of your choice (maybe
customised to your own model):

10-15

10-10

10-5

100

105

1010

1015

 1 10 100 1000 10000

de
ns

iti
es

 (
M

pc
2)

conformal time (Mpc)

radiation
matter

Lambda

2. good to know: directory test/ contains several test codes executing only part of
the main(...) function.

For instance: test/test_background.c only executes input_init(...),
background_init(...), and then outputs a table of all background quantities. Useful
also for quick debugging!
Usage:
> make test_background

> ./test_background myinput.ini

Same with test_thermodynamics.c, test_perturbations.c, test_nonlinear.c,
test_transfer.c...

Julien Lesgourgues Lecture II: Background

Background exercises (see exercise sheet for more details)

Exercise IIa

Reproduce this plot from the Dodelson
book Modern Cosmology, using the
plotting software of your choice.

Exercise IIb

Add a new matter species with an equation of state p = wρ. Visualise its evolution
with time. Provoke an error on purpose, to check the error format.

Julien Lesgourgues Lecture II: Background

Error management in class

By following a few general rules, we get automatically some very informative error
messages like:

Error in thermodynamics_init

=>thermodynamics_init(L:292) :error in

thermodynamics_helium_from_bbn(ppr ,pba ,pth);

=>thermodynamics_helium_from_bbn(L:1031) :condition (omega_b

> omegab[num_omegab -1]) is true; You have asked for an

unrealistic high value omega_b = 7.350000e-02. The

corrresponding value of the primordial helium fraction

cannot be found in the interpolation table. If you

really want this value , you should fix YHe to a given

value rather than to BBN

We only wrote the piece starting with “You have asked...”. All the rest was
generated automatically by the code. This follows from following everywhere 5 rules.

Julien Lesgourgues Lecture II: Background

Error management in class

Rule 1:

All functions are of type int, and return either _SUCCESS_ or _FAILURE_ (defined
internally in include/common.h: #define _SUCCESS_ 0 , #define _FAILURE_ 1)

int function(input , &output) {

...

if (something goes wrong) return _FAILURE_;

...

return _SUCCESS_;

}

Julien Lesgourgues Lecture II: Background

Error management in class

Rule 2:

All functions are called with the macro class_call(.,.,.) (all macros
class_xxx(...) are defined in include/common.h):

class_call(function(input , &output),

error_message_from_function ,

error_message_output);

This is simply a short-cut for

if (function == _FAILURE_) {

ErrorMsg Transmit_Error_Message;

sprintf(Transmit_Error_Message ,"%s(L:%d) : error in %s;\

n=>%s",__func__ ,__LINE__ ,#function ,

error_message_from_function);

sprintf(error_message_output ,"%s",Transmit_Error_Message

);

return _FAILURE_;

}

Julien Lesgourgues Lecture II: Background

Error management in class

Rule 3:

Each of the 9 main structures xx has a field called error_message. Any function in
the module xxx.c is called xxx_something() and writes its error message in
xx.error_message (if pxx is a pointer to xx, in pxx->error_message).

So if we are in perturb_init() and we call perturb_indices() we write:

class_call(perturb_indices (...,ppt),

ppt ->error_message ,

ppt ->error_message);

But if we are in perturb_init() and we call background_at_tau() we write:

class_call(background_at_tau (...,pba),

pba ->error_message ,

ppt ->error_message);

Julien Lesgourgues Lecture II: Background

Error management in class

Rule 4:

Whenever an error could occur, we first write a test with the macro
class_test(.,.,.):

class_test(condition , error_message , "Some text");

or

class_test(condition , error_message , "Some text and numbers

%d %e",n,x);

Example:

class_test(num_points == 0,

ppt ->error_message ,

"this might be caused by ...");

step = (max -min)/((double)num_points);

In the text, no need to say in which function we are, or to write that the number of
points is zero, or to put a \n, all this is done automatically.

Julien Lesgourgues Lecture II: Background

Error management in class

Rule 5:

Always allocate memory with the macros class_alloc(), class_calloc(),
class_realloc().

Instead of

malloc(parray , N*sizeof(double));

use

class_alloc(parray , N*sizeof(double), pxx ->error_message);

If allocation fails (N too big, null or negative), the function will automatically return a
FAILURE and the code will return an appropriate error message:

Error running background_init

=>background_init(L:537):error in background_solve(ppr ,pba);

=>background_solve(L:1303):could not allocate pvecback with

size -8

Julien Lesgourgues Lecture II: Background

Error management in class

Final remark: in main/class.c there is no “higher level” so the 10 initialisation
functions are called like e.g.:

int main(int argc , char **argv) {

....

if (background_init (&pr ,&ba) == _FAILURE_) {

printf("\n\nError running background_init \n=>%s\n",ba.

error_message);

return _FAILURE_;

}

...

But when CLASS is called as a function from another code (e.g. Monte Python or
test/test_loops.c) we can use the standard way:

int class (...., ErrorMsg errmsg) {

....

class_call(background_init(ppr ,pba),

pba ->error_message ,

errmsg);

...

Then, CLASS never crashes (in principle...), it only returns class(...)== _FAILURE_

Julien Lesgourgues Lecture II: Background

