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Thermal history

treated by the module thermodynamics.c. So this lecture will refer mainly to
the content of input/thermodynamics.h, source/thermodynamics.c, and to
the structure referred as th:

struct thermodynamics th;

with fields th.blabla, or through the pointer pth:

struct thermodynamics * pth;

with fields pth->blabla.

the goal of this module is to solve the thermal history and store the results in a
table. It should provide a function able to interpolate within this table at any
value of redshift.

other modules should be able to know all useful thermodynamical quantities at
any given redshift.
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Thermodynamics

In this lecture we will address the following questions:

what is assumed in CLASS about recombination and reionisation?

how are they implemented?

how to prepare plots of thermodynamical quantitites.
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Thermal history

free electron fraction xe = nfree electrons/np (not counting protons in He
nuclei, so xe can be > 1)
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observe the first/second He recombination, the H recombination (around
T ∼ 0.3 eV, not 13.6 eV!), the H reionisation, the first He reionisation

Thomson scattering rate κ′ = σT anpxe : universe becomes transparent when
κ′ < H, i.e. at recombination
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Thermal history

optical depth κ(τ) =
∫ τ0
τ κ′dτ = depth of the cosmic fog
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Thermal history

visibility function g(τ) = κ′e−κ = probability that last interaction was at τ
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Recombination

H+ + e− ←→ H + γ

accurate simulation extremely involved (many excited levels contribute)

RECFAST: Peebles recombination (two levels) with fudge factors

also HyRec, CosmoRec. All agree with RECAST v1.6 at precision level of Planck

CLASS user can switch between RECFAST 1.6 (coded within
source/thermodynamics.c) and HyRec (separate code in hyrec/) using
recombination = RECFAST or recombination = HyRec.

RECFAST integrates d
dz
{xH, xHe, Tb}. HyRec is more sophisticated.

In both cases, CLASS needs to keep in memory an interpolation table for just
{xe(z), Tb(z)}.

Julien Lesgourgues Lecture III: thermodynamics



Recombination

H+ + e− ←→ H + γ

accurate simulation extremely involved (many excited levels contribute)

RECFAST: Peebles recombination (two levels) with fudge factors

also HyRec, CosmoRec. All agree with RECAST v1.6 at precision level of Planck

CLASS user can switch between RECFAST 1.6 (coded within
source/thermodynamics.c) and HyRec (separate code in hyrec/) using
recombination = RECFAST or recombination = HyRec.

RECFAST integrates d
dz
{xH, xHe, Tb}. HyRec is more sophisticated.

In both cases, CLASS needs to keep in memory an interpolation table for just
{xe(z), Tb(z)}.

Julien Lesgourgues Lecture III: thermodynamics



Recombination

H+ + e− ←→ H + γ

accurate simulation extremely involved (many excited levels contribute)

RECFAST: Peebles recombination (two levels) with fudge factors

also HyRec, CosmoRec. All agree with RECAST v1.6 at precision level of Planck

CLASS user can switch between RECFAST 1.6 (coded within
source/thermodynamics.c) and HyRec (separate code in hyrec/) using
recombination = RECFAST or recombination = HyRec.

RECFAST integrates d
dz
{xH, xHe, Tb}. HyRec is more sophisticated.

In both cases, CLASS needs to keep in memory an interpolation table for just
{xe(z), Tb(z)}.

Julien Lesgourgues Lecture III: thermodynamics



Recombination

H+ + e− ←→ H + γ

accurate simulation extremely involved (many excited levels contribute)

RECFAST: Peebles recombination (two levels) with fudge factors

also HyRec, CosmoRec. All agree with RECAST v1.6 at precision level of Planck

CLASS user can switch between RECFAST 1.6 (coded within
source/thermodynamics.c) and HyRec (separate code in hyrec/) using
recombination = RECFAST or recombination = HyRec.

RECFAST integrates d
dz
{xH, xHe, Tb}. HyRec is more sophisticated.

In both cases, CLASS needs to keep in memory an interpolation table for just
{xe(z), Tb(z)}.

Julien Lesgourgues Lecture III: thermodynamics



Recombination

H+ + e− ←→ H + γ

accurate simulation extremely involved (many excited levels contribute)

RECFAST: Peebles recombination (two levels) with fudge factors

also HyRec, CosmoRec. All agree with RECAST v1.6 at precision level of Planck

CLASS user can switch between RECFAST 1.6 (coded within
source/thermodynamics.c) and HyRec (separate code in hyrec/) using
recombination = RECFAST or recombination = HyRec.

RECFAST integrates d
dz
{xH, xHe, Tb}. HyRec is more sophisticated.

In both cases, CLASS needs to keep in memory an interpolation table for just
{xe(z), Tb(z)}.

Julien Lesgourgues Lecture III: thermodynamics



Recombination

H+ + e− ←→ H + γ

accurate simulation extremely involved (many excited levels contribute)

RECFAST: Peebles recombination (two levels) with fudge factors

also HyRec, CosmoRec. All agree with RECAST v1.6 at precision level of Planck

CLASS user can switch between RECFAST 1.6 (coded within
source/thermodynamics.c) and HyRec (separate code in hyrec/) using
recombination = RECFAST or recombination = HyRec.

RECFAST integrates d
dz
{xH, xHe, Tb}. HyRec is more sophisticated.

In both cases, CLASS needs to keep in memory an interpolation table for just
{xe(z), Tb(z)}.

Julien Lesgourgues Lecture III: thermodynamics



Recombination

Recombination needs one more cosmological parameter: the primordial Helium
fraction YHe.

User can fix it to given value (e.g. Y_He = 0.25) or to Y_He = BBN. Then the
value is infered from an interpolation table computed with a BBN code
(Parthenope), for each given value of Neff , ωb (assumes µνe = 0, easy to
generalise).

BBN interpolation table located in separate directory, in bbn/bbn.dat
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The module thermodynamics.c

External functions are:

thermodynamics_at_z(pba,pth,z,...,pvecthermo): interpolates in
thermodynamics table (stored in pth) at a given z, returns a vector pvecthermo.

thermodynamics_init(ppr,pba,pth): computes thermodynamics table and
stores it in pth.

thermodynamics_free(pth): free memory allocated in pth.

Let us now review the many tasks of thermodynamics_init().
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The function thermodynamics init(ppr,pba,pth)

define all indices with thermodynamics_indices()

eventually, find YHe with thermodynamics_helium_from_bbn()

solve recombination with thermodynamics_recombination(), which calls either
RECFAST or HyRec, and stores {xe(z), Tb(z)} (and derived quantities) in a
temporary structure preco.

impose a function xe(z) at small redshift, following user’s input, but ensuring
continuity with the solution from recombination. Store low-z {xe(z), Tb(z)}
(and derived quantities) in a temporary structure preio.

thermodynamics_merge_reco_and_reio() fills the final interpolation table in
pth using preco at high z and preio at low z.

derivation of a few more related quantities (see later).
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Reionization models

reionisation very uncertain. Can be probed directly by looking at IGM
(Lyman-α, ...) but with large uncertainties.

CMB probes mainly an integrated quantity, τreio =
∫ τ0
τ∗
κ′dτ , close to 0.08.

Gives suppression of Cl’s at large l due to rescattering.

small-l CMB (T and even better E) gives information on history (i.e. on xe(z),
through κ′(z)).

10-11

10-10

10-9

 10  100  1000

[l(
l+

1]
/2

π 
C

lT
T

l

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

 10  100  1000

[l(
l+

1]
/2

π 
C

lE
E

l

Julien Lesgourgues Lecture III: thermodynamics



Reionization models

if reio_parametrization = reio_camb, xe(z) has a tanh-shaped step,
centered on zreio, and matched to the correct value corresponding to freeze-out
after recombination. User free to pass either z_reio = ... or tau_reio = ....
Codes find the missing one automatically, stores it in pth (and indicates it in
output if thermodynamics_verbose > 0).
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Reionization models

instead, if reio_parametrization = reio_bins_tanh, code assumes a binned
reionisation history, with smooth tanh steps between bin centers. User passes
e.g.

binned_reio_num = 3

binned_reio_z = 8,12,16

binned_reio_xe = 0.7 ,0.2 ,0.1

binned_reio_step_sharpness = 0.3

then tau_reio cannot be passed in input, but calculated, stored and given in
output.
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Quantities stored in thermodynamics table

The table pth->thermodynamics_table[index_z*pth->th_size+pba->index_th]

has indices:

index_th_xe ionization fraction xe
index_th_dkappa Thomson scattering rate κ′ (units Mpc−1)

index_th_tau_d Baryon drag optical depth
∫ τ0
τ

4ργ
3ρb

κ′dτ

index_th_exp_m_kappa exp. of (photon) optical depth e−κ with κ =
∫ τ0
τ κ′dτ

index_th_g visibility function g = κ′e−κ

index_th_Tb baryon temperature Tb given by RECFAST

index_th_cb2 squared baryon sound speed c2b = kB
µ
Tb

(
1− 1

3
d lnTb
d ln a

)
index_th_rate max. variation rate (for sampling the sources)

(plus extra indices for other derivatives: κ′′, κ′′′, g′, g′′, (c2b)
′, (c2b)

′′).
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Getting thermodynamical quantities from other modules

First allocate background and thermodynamics vectors:

double * pvecback;

double * pvecthermo;

class_alloc(pvecback ,

pba ->bg_size_short*sizeof(double),

ppt ->error_message);

class_alloc(pvecthermo ,

pth ->th_size*sizeof(double),

ppt ->error_message);
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Getting thermodynamical quantities from other modules

Then, fill them:

class_call(background_at_tau(pba ,

tau ,

pba ->short_info ,

..., ...,

pvecback),

pba ->error_message ,

ppt ->error_message);

class_call(thermodynamics_at_z(pba ,

pth ,

z,

..., ...,

pvecback ,

pvecthermo),

pth ->error_message ,

ppt ->error_message);

if (pvecthermo[pth ->index_th_dkappa] > H) {...}

(pvecback needed to extrapolate accurately for z > zrecfast max.)

Julien Lesgourgues Lecture III: thermodynamics



Other useful quantities stored in pth

thermodynamics_init() finds zrec numerically, by searching for the maximum
of the visibility function.

it stores the related quantities pth->z_rec, pth->tau_rec, pth->rs_rec,
pth->ds_rec, pth->ra_rec, pth->da_rec.

These quantitites play a crucial role in choosing the sampling of the sources in

k-space, because oscillation phase given by cos
(
2π

ds(zrec)
λ(zrec)

)
. May give an

estimate of θpeak = π
lpeak

∼ θs ≡ ds(zrec)
da(zrec)

=
rs(zrec)
ra(zrec)

.

also finds the baryon drag time zd numerically, such that the baryon optical
depth at zd is one.

it stores the related quantities pth->z_d, pth->tau_d, pth->ds_d, pth->rs_d
(the latter gives the phase of the BAOs in large scale structure).
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Is RECFAST identical in CLASS and CAMB?

Two differences:

RECFAST solution slightly smoothed around points where solution is not
derivable. Just useful for testing the limit of high accuracy / small stepsize in
RECFAST.

several input parameters allow to play with a DM annihilation effect, as
described in Giesen et al. 2012. Effect on xe and Tb, with signatures on CMB.
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Printing the thermal history

Execute e.g. ./class myinput.ini including in the input file:
write thermodynamics = yes

root = output/toto_

The output module will also write a file output/toto_thermodynamics.dat with an
explicit header:
# Table of selected thermodynamics quantitites

# The following notation is used in column titles:

# x_e = electron ionisation fraction

# -kappa = optical depth

# kappa’ = Thomson scattering rate, prime denotes conformal time

derivatives

# g = kappa’ e^-kappa = visibility function

# Tb = baryon temperature

# c_b^2 = baryon sound speed squared

# tau_d = baryon drag optical depth

#z conf. time [Mpc] x_e kappa’ [Mpc^-1] exp(-kappa)g [Mpc^-1] Tb [K] c_b

^2 tau_d

Output easy to customise in output.c, by editing:
output_one_line_of_thermodynamics(...) for the quantities to plot in each line
output_open_thermodynamics_file(...) for the header (description of columns)
(another way would be to use test_thermodynamics.c)
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The output module will also write a file output/toto_thermodynamics.dat with an
explicit header:
# Table of selected thermodynamics quantitites

# The following notation is used in column titles:

# x_e = electron ionisation fraction

# -kappa = optical depth

# kappa’ = Thomson scattering rate, prime denotes conformal time

derivatives

# g = kappa’ e^-kappa = visibility function

# Tb = baryon temperature

# c_b^2 = baryon sound speed squared

# tau_d = baryon drag optical depth

#z conf. time [Mpc] x_e kappa’ [Mpc^-1] exp(-kappa)g [Mpc^-1] Tb [K] c_b

^2 tau_d

Output easy to customise in output.c, by editing:
output_one_line_of_thermodynamics(...) for the quantities to plot in each line
output_open_thermodynamics_file(...) for the header (description of columns)
(another way would be to use test_thermodynamics.c)
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