
Tools for cosmology:
the Cosmological Linear Anisotropy Solving

System (CLASS)1

Julien Lesgourgues

TTK, RWTH Aachen University

euclid-school16, Narbonne, 23.08.2016

1 code developed together with Thomas Tram plus many others

J. Lesgourgues CLASS

Introduction

Double challenge:

My first CLASS course in 4 hours (usually, our course “tools for cosmology”
includes 13 hours on CLASS + 5 hours on MontePython)

Ziad =⇒ 4 “wallclock” hours = 2 “effective” hours

J. Lesgourgues CLASS

Introduction

Double challenge:

My first CLASS course in 4 hours (usually, our course “tools for cosmology”
includes 13 hours on CLASS + 5 hours on MontePython)

Ziad =⇒ 4 “wallclock” hours = 2 “effective” hours

J. Lesgourgues CLASS

Introduction

Double challenge:

My first CLASS course in 4 hours (usually, our course “tools for cosmology”
includes 13 hours on CLASS + 5 hours on MontePython)

Ziad =⇒ 4 “wallclock” hours = 2 “effective” hours

J. Lesgourgues CLASS

Context

CLASS is the 5th public Boltzmann code covering all basic cosmology:

1 COSMICS package in f77 (Bertschinger 1995)

2 CMBFAST in f77 (Seljak & Zaldarriaga 1996)

3 CAMB in f90/2000 (Lewis & Challinors 1999)

4 CMBEASY in C++ (Doran 2003)

5 CLASS in C (Lesgourgues & Tram 2011)

... and there will probably be 1 or 2 more! But only CAMB and CLASS are still
developed and kept to high precision level.

J. Lesgourgues CLASS

Context

Project started on request of Planck science team, in order to have a tool independent
from CAMB, and check for possible Boltzmann-code-induced bias in parameter
extraction. The CLASS-CAMB comparison has triggered progress in the accuracy of
both codes. Agreement established at 10−4 (0.01%) level for CMB observables, using
highest-precision settings in both codes. But the CLASS projected expandeded and
went much further the initial Planck purposes.

CLASS is meant to be

more general (more models, more output/observables)

more modern (structured, modular, flexible, wrap-able: wrapper for python,
C++, automatic precision test code)

more friendly (documented, structured, easy to understand) and hence easier to
modify (coding additional models/observables)

equally accurate and fast (in principle, better structure offers more possibilities
to make it more accurate and fast than competitors in future)

J. Lesgourgues CLASS

With CLASS you can get:

The CMB anisotropy spectra:

101 102 103

`

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9
`(
`
+

1)
C
l/

2π

scalar: TT
scalar: EE
scalar: BB
tensor: TT
tensor: EE
tensor: BB

J. Lesgourgues CLASS

With CLASS you can get:

The matter power spectrum:

10-4 10-3 10-2 10-1 100

k (h/Mpc)

10-1

100

101

102

103

104

105
P
(k

)
(h

/M
p
c)

3
Matter power spectrum: linear, HALOFIT

z=0: linear

z=0: nonlinear

z=2: linear

z=2: nonlinear

J. Lesgourgues CLASS

With CLASS you can get:

The transfer functions at a given time/redshift (e.g. initial conditions for N-body):

10-4 10-3 10-2 10-1 100 101

k (h/Mpc)

10-4

10-3

10-2

10-1

100

101

102

103

104
−
δ(
k
,t
)/
R

(k
,τ
in
i)

density transfer functions at z=100

δγ

δb

δcdm

δur

J. Lesgourgues CLASS

With CLASS you can get:

The matter density (number count) Cl’s, or the lensing Cl’s (with arbitrary
selection/window functions):

101 102

l

10-13

10-12

10-11

10-10

10-9

10-8

10-7
[`

(`
+

1)
]2
C
φ
φ

l
/2
π

lensing potential spectrum (gaussians bins, ∆z=0.1)

linear: z=0.1

linear: z=0.3

linear: z=0.5

halofit: z=0.1

halofit: z=0.3

halofit: z=0.5

J. Lesgourgues CLASS

With CLASS you can get:

The background evolution in a given cosmological model:

100 101 102 103 104

conformal time [Mpc]

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

1012
d
e
n
si

ti
e
s

[M
p
c2

]
ργ

ρb

ρcdm

ρν

ρΛ

J. Lesgourgues CLASS

With CLASS you can get:

The thermal history in a given cosmological model:

100 101 102 103 104

z

10-4

10-3

10-2

10-1

100

xe

J. Lesgourgues CLASS

With CLASS you can get:

The time evolution of perturbations for individual Fourier modes:

10-1 100 101 102 103 104

tau [Mpc]

10-2

10-1

100

101

102

103

104

105
k=1 h/Mpc, normalised to R(k,auini) =1

|δγ |
|δb |
|δν |
|δcdm|

J. Lesgourgues CLASS

With CLASS you can get:

... and several other quantities, for instance:

distance–redshift relations, sound horizon, characteristic redshifts;

primordial spectrum for given inflationary potential;

decomposition of CMB Cl’s in intrinsic, Sachs-Wolfe, Doppler, ISW, etc.;

decomposition of galaxy number count Cl’s in density, RSD, lensing, etc.;

...

J. Lesgourgues CLASS

With CLASS you can get:

... if you use CLASS as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various way and make all kinds of
computations or nice plots:

4.2. Parameter dependency of the CMB spectrum 37

Figure 4.17: For small !m, the time of radiation-matter equality takes place late.
Then ⇥0(⌘dec) is not significantly damped by the baryon damping e↵ect. If !m is
high, ⇥0 is significantly lowered at the time of decoupling.

J. Lesgourgues CLASS

With CLASS you can get:

... if you use CLASS as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various way and make all kinds of
computations or nice plots:

38 Chapter 4. Results

Figure 4.18: For small !m, the epoch of ⇤-domintaion is reached earlier and the late
ISW gets important. Furthermore, the time of matter-radiation equality is later
and � is not yet stabilized at the time of decoupling. Therefore, the early ISW
contribution increases.

J. Lesgourgues CLASS

With CLASS you can get:

... if you use CLASS as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various way and make all kinds of
computations or nice plots:4.2. Parameter dependency of the CMB spectrum 33

Figure 4.12: Transfer functions for a neutrinoless universe at time of decoupling. By
increasing !b, the zero point of oscillations is shifted to negative values. This causes
a suppression of even peaks in the spectrum 4.11.

the exact spectrum computed by CLASS is very similar.
Furthermore, for increasing !b, the peaks are shifted towards higher l and the curve
is less damped. To explain that, the physical sound horizon, the angular diameter
distance and the physical di↵usion scale can be considered again.

!b zdec da(⌘dec) [Mpc] ds(⌘dec) [Mpc] lpeak ddiff (⌘dec) [Mpc] ld
0.012 1094 12.7 0.139 288 0.041 981
0.016 1087 12.8 0.138 291 0.038 1055
0.019 1081 12.9 0.137 295 0.037 1108
0.022 1078 12.9 0.136 298 0.035 1156
0.026 1075 12.9 0.135 302 0.034 1191
0.029 1072 13.0 0.133 306 0.034 1215
0.032 1071 13.0 0.132 310 0.033 1239

Table 4.2: For increasing !b in a universe with neutrinos, the physical sound horizon
and the di↵usion scale gets smaller while the angular diameter distance remains
approximately constant. The same e↵ects occur for Neff = 0.

Since the sound speed cs depends on !b, also the sound horizon does. If !b increases,
cs decreases and ds gets smaller. Because !b also controls the ionization history of
the universe, the physical di↵usion length depends on the parameter as well. The
angular diameter as a function of z remains constant, since this quantity makes no
di↵erence between !cdm and !b. The reason for the small variation of da is probably
the change of the redshift of decoupling zdec. Therefore, with increasing !b the peaks
are shifted towards high l and the spectrum gets less damped.

32 Chapter 4. Results

Figure 4.11: Impact of the baryon density parameter on the spectrum in a universe
without neutrinos. For increasing !b, the di↵erence between the amplitudes of odd
and even peaks increases. Furthermore, the peak scale gets shifted towards higher l
and the curve decays slower.

4.2.2 Dependency on !b

Since the inequality of � and hides important properties of the spectrum if !b

is changed, the e↵ect of this parameter can be analysed much better in a model
without neutrinos. As a comparison, the results for a universe with neutrinos is
given in the appendix A.1. There, the Sachs-Wolfe plateau, which is determined by
(⇥0 +)(⌘dec), is not constant under changes of !b. From the conservation of R
on super Hubble scales, one can show, that the transfer functions (⇥0 +)(⌘dec)
should be independent from the cosmological parameters, as long as the time of
decoupling is during matter domination [10]. This criterion is not fulfilled in the
model with neutrinos. This shows again, that the neglect of �⌫ is not a very accurate
approximation.

The result of the computation without neutrinos is shown in Fig. 4.11. In the
spectrum, a few characteristics can be identified: The most important feature is the
change of the odd and even peak amplitude ratios. By increasing !b, the odd peaks
get significantly higher, while the even peaks are suppressed.

This can be explained using Eq. 2.30. As we saw, the zero point of ⇥0 oscillations
is given by ⇥̄0 ⇡ �(1+R) . If !b increases, the ratio R = 3⇢̄b

4⇢̄�
increases as well and

the zero point of oscillations is shifted to negative values. As can be seen in Fig.
4.12, this shift results in alternating amplified and decreased peaks in the square
of (⇥0 +)(⌘dec, k). Using the correspondence between l and k, the change of R
explains the change of the odd and even peak amplitude ratios. Furthermore, the
peak scale and the di↵usion scale changes, if !b is varied. As shown in Fig. 4.13,

J. Lesgourgues CLASS

With CLASS you can get:

... and movies of CMB perturbations in 2D slices of early universe with our Real space
graphical interface (not yet included in public distribution, please be patient or ask for
it by email); here is a snapshot:

J. Lesgourgues CLASS

With CLASS you can get:

... all this for a wide range of cosmological models: all those implemented in the
public CAMB code, plus several other ingredients, especially in the sectors of:

primordial perturbations (internal inflationary perturbation module with given
V (φ), takes arbitrary BSI spectra, correlated isocurvature modes),

neutrinos (chemical potentials, arbitrary phase-space distributions, flavor
mixing...),

Dark Matter (warm, decaying, annihilating, interacting...),

Dark Energy (fluid with CLP+ sound speed, quintessence with given V (φ))

also Modified Gravity if you try the recently released HiCLASS branch (Bellini,
Sawicki, Zumalacarregui, http://www.hiclass-code.net)

J. Lesgourgues CLASS

http://www.hiclass-code.net

Our program...

This is what we can fit in ∼ 3.5 hours:

1 14 general coding principles of the code

2 Basic running

3 Plotting

4 Python wrapper and notebook

with short hands-on throughout the lecture.

That should be sufficient if you plan some efficient and even advanced use of the
code, but not if you plan to modify the code significantly by yourself.

J. Lesgourgues CLASS

... and beyond!

If you do plan to modify the code significantly, on top of the official documentation:

http://www.class-code.net =⇒ click: online html documentation

you may have a look at extra material and corrected exercises e.g. from the Dropbox
folder of our lectures at IPMU Tokyo (2014):

https:

//www.dropbox.com/sh/ma5muh76sggwk8k/AABl_DDUBEzAjjdywMjeTya2a?dl=0

1 In Tokyo Tools/CLASS Lecture Slides: topics not covered here:

lecture2 structure.pdf lecture11 non cold dark matter.pdf
lecture5 index and error.pdf lecture12 primordial.pdf
lecture6 input module.pdf lecture13 other modules.pdf
lecture8 background.pdf lecture14a testing.pdf
lecture9 thermodynamics.pdf lecture14b adding species.pdf
lecture10 perturbations.pdf

2 In Tokyo Tools/CLASS Exercises: exercises.pdf, exercises correction.pdf
(Exercises 0, 1a, 1b, 1c, 1d, 2a can be done directly after this course; 1e, 1f, 2b,
3 require reading at least lectures 2, 5, 6, 14b above)

3 In Tokyo Tools/IPython Notebooks: solution to the same exercises entirely in
python

4 + slides/exercises on MontePython

J. Lesgourgues CLASS

http://www.class-code.net
https://www.dropbox.com/sh/ma5muh76sggwk8k/AABl_DDUBEzAjjdywMjeTya2a?dl=0
https://www.dropbox.com/sh/ma5muh76sggwk8k/AABl_DDUBEzAjjdywMjeTya2a?dl=0

Hand-on during the lecture

When you see the logo followed by some instructions, you can check
things by yourself on your terminal. For that, you should be in the class directory (e.g.
class public-2.5.0/), with the code installed, and seeing among others:

class # C executable

explanatory.ini # reference input file

output/ # directory for output files

include/ # header files (*.h) containing declarations

source/ # the 10 important modules of CLASS

main/ # main CLASS function: short , just calls 10 modules

test/ # other main functions for testing part of the code

tools/ # auxiliary pieces of code (numerical methods)

python/ # python wrapper of CLASS

cpp/ # C++ wrapper of CLASS

plus a few other directories containing ancillary data (bbn/) or external code (hyrec/)

J. Lesgourgues CLASS

14 general coding principles of class

Our efforts for ensuring flexibility and friendliness in
CLASS, summarised in 14 key points

J. Lesgourgues CLASS

14 general coding principles of class

1. Written in plain C with no external libraries

C is free, diffuse, easy, fast. Self-contained and ready to install, straightforward to
compile. (However parallelisation requires OpenMP, and the python wrapper requires the installation of python

modules compatible with C compiler: both are more delicate on Mac OS ≥ 10.9).

2. Input parameters are “interpreted”

Some basic logic has been incorporated in the code. Easy to elaborate further.

Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;
• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Look at beginning of explanatory.ini!!!

class$ more explanatory.ini

explanatory.ini = monster file, with all possible input parameters, plays role of an
end-user documentation. Keep it as a reference! Don’t modify it! Copy it first, or
paste relevant parts to your own file!

J. Lesgourgues CLASS

14 general coding principles of class

1. Written in plain C with no external libraries

C is free, diffuse, easy, fast. Self-contained and ready to install, straightforward to
compile. (However parallelisation requires OpenMP, and the python wrapper requires the installation of python

modules compatible with C compiler: both are more delicate on Mac OS ≥ 10.9).

2. Input parameters are “interpreted”

Some basic logic has been incorporated in the code. Easy to elaborate further.

Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;
• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Look at beginning of explanatory.ini!!!

class$ more explanatory.ini

explanatory.ini = monster file, with all possible input parameters, plays role of an
end-user documentation. Keep it as a reference! Don’t modify it! Copy it first, or
paste relevant parts to your own file!

J. Lesgourgues CLASS

14 general coding principles of class

1. Written in plain C with no external libraries

C is free, diffuse, easy, fast. Self-contained and ready to install, straightforward to
compile. (However parallelisation requires OpenMP, and the python wrapper requires the installation of python

modules compatible with C compiler: both are more delicate on Mac OS ≥ 10.9).

2. Input parameters are “interpreted”

Some basic logic has been incorporated in the code. Easy to elaborate further.

Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;
• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

3. Perturbation equations and notations taken literally from well-known Ma &
Bertschinger (astro-ph/9506072) paper ...

... rather than specific notations of one given group, or mixed notations from various
origins.

For non-flat universes we found and published the simplest possible generalisation of
Ma & Bertschinger notations, (arXiv:1305.3261).

J. Lesgourgues CLASS

14 general coding principles of class

4. Code intensively documented

Inside .h and .c files: as many comment lines as C lines. On web page and in doc/

folder: extensive PDF and html documentation generated automatically with doxygen.

5. Easy units

Inside the code, all important variables are either dimensionless or in Mpcn
(excepted inside recombination part, developped externally: recfast or hyrec)

Of course the output may have different units if more convenient/traditional (e.g. k in h/Mpc, etc.)

6. No hard coding, for example:

• Never write a sampling step scheme in physical units; code infers sampling as given
fraction of dimensionless physical quantities;
• Never write the index of an array as an integer; indexing done automatically and
internally by the code; use symbolic index names; e.g. index pt delta cdm

7. No global variables

All variables passed as arguments of functions. Important for readability and
parallelisation.

J. Lesgourgues CLASS

14 general coding principles of class

4. Code intensively documented

Inside .h and .c files: as many comment lines as C lines. On web page and in doc/

folder: extensive PDF and html documentation generated automatically with doxygen.

5. Easy units

Inside the code, all important variables are either dimensionless or in Mpcn
(excepted inside recombination part, developped externally: recfast or hyrec)

Of course the output may have different units if more convenient/traditional (e.g. k in h/Mpc, etc.)

6. No hard coding, for example:

• Never write a sampling step scheme in physical units; code infers sampling as given
fraction of dimensionless physical quantities;
• Never write the index of an array as an integer; indexing done automatically and
internally by the code; use symbolic index names; e.g. index pt delta cdm

7. No global variables

All variables passed as arguments of functions. Important for readability and
parallelisation.

J. Lesgourgues CLASS

14 general coding principles of class

4. Code intensively documented

Inside .h and .c files: as many comment lines as C lines. On web page and in doc/

folder: extensive PDF and html documentation generated automatically with doxygen.

5. Easy units

Inside the code, all important variables are either dimensionless or in Mpcn
(excepted inside recombination part, developped externally: recfast or hyrec)

Of course the output may have different units if more convenient/traditional (e.g. k in h/Mpc, etc.)

6. No hard coding, for example:

• Never write a sampling step scheme in physical units; code infers sampling as given
fraction of dimensionless physical quantities;
• Never write the index of an array as an integer; indexing done automatically and
internally by the code; use symbolic index names; e.g. index pt delta cdm

7. No global variables

All variables passed as arguments of functions. Important for readability and
parallelisation.

J. Lesgourgues CLASS

14 general coding principles of class

4. Code intensively documented

Inside .h and .c files: as many comment lines as C lines. On web page and in doc/

folder: extensive PDF and html documentation generated automatically with doxygen.

5. Easy units

Inside the code, all important variables are either dimensionless or in Mpcn
(excepted inside recombination part, developped externally: recfast or hyrec)

Of course the output may have different units if more convenient/traditional (e.g. k in h/Mpc, etc.)

6. No hard coding, for example:

• Never write a sampling step scheme in physical units; code infers sampling as given
fraction of dimensionless physical quantities;
• Never write the index of an array as an integer; indexing done automatically and
internally by the code; use symbolic index names; e.g. index pt delta cdm

7. No global variables

All variables passed as arguments of functions. Important for readability and
parallelisation.

J. Lesgourgues CLASS

14 general coding principles of class

8. Clear modular structure

Dinstinct modules with separate physical tasks. No duplicate equations.

1. input.c

2. background.c

3. thermodynamics.c

4. perturbations.c

5. primordial.c

6. nonlinear.c

7. transfer.c

8. spectra.c

9. lensing.c

10. output.c

E.g.: Friedmann equation appears in one single place. Same for linearised Einstein
equations. Ideal for implementing modified gravity theories.

Search Friedmann in source/background.c

J. Lesgourgues CLASS

14 general coding principles of class

9. All precision variables grouped in one single place (input.c), and even inside a
single structure ‘precision’

There are... many. True for any code, but they are usually hidden and spread!

10. Given “ingredient” always implemented between brackets, in zone switched by a
flag

• adding new physics does not slow down the code or compromise its readability.
• incentive to add lots of new things even if rarely used, with no drawback.
• with a search, one can localise all the parts of the code related to a given ingredient.

Examples: if (has_fld == TRUE) {...}

if (has_cmb_lensing == TRUE) {...}

Search has fld in source/background.c

J. Lesgourgues CLASS

14 general coding principles of class

9. All precision variables grouped in one single place (input.c), and even inside a
single structure ‘precision’

There are... many. True for any code, but they are usually hidden and spread!

10. Given “ingredient” always implemented between brackets, in zone switched by a
flag

• adding new physics does not slow down the code or compromise its readability.
• incentive to add lots of new things even if rarely used, with no drawback.
• with a search, one can localise all the parts of the code related to a given ingredient.

Examples: if (has_fld == TRUE) {...}

if (has_cmb_lensing == TRUE) {...}

Search has fld in source/background.c

J. Lesgourgues CLASS

14 general coding principles of class

9. All precision variables grouped in one single place (input.c), and even inside a
single structure ‘precision’

There are... many. True for any code, but they are usually hidden and spread!

10. Given “ingredient” always implemented between brackets, in zone switched by a
flag

• adding new physics does not slow down the code or compromise its readability.
• incentive to add lots of new things even if rarely used, with no drawback.
• with a search, one can localise all the parts of the code related to a given ingredient.

Examples: if (has_fld == TRUE) {...}

if (has_cmb_lensing == TRUE) {...}

11. Adding new ingredient...

... can be done by searching for occurrence of another similar ingredient,
copy/pasting, and adapting the new lines.

Example: if you want to add a new Dark Energy component, you may search for
‘_fld’, duplicate all corresponding lines, change ‘_fld’ into e.g. ‘_myde’, and adapt the
physical equations.

J. Lesgourgues CLASS

14 general coding principles of class

12. Error management

Our goal: CLASS should never crash. In case of problem, it returns an error message,
with a well-documented error (line, function, what caused the crash, how to avoid it).
Most of this message is generated automatically by the code.

If you get a crash: probably due to your own modifications. If you make the public CLASS crash, please write to us!

Run ./class input.ini with an input file containing only

omega_b = 0.07

J. Lesgourgues CLASS

14 general coding principles of class

12. Error management

Our goal: CLASS should never crash. In case of problem, it returns an error message,
with a well-documented error (line, function, what caused the crash, how to avoid it).
Most of this message is generated automatically by the code.

Run ./class input.ini with only omega_b = 0.07

You get an informative error message:

Error in thermodynamics_init

=>thermodynamics_init(L:292) :error in

thermodynamics_helium_from_bbn(ppr ,pba ,pth);

=>thermodynamics_helium_from_bbn(L:1031) :condition (omega_b

> omegab[num_omegab -1]) is true; You have asked for an

unrealistic high value omega_b = 7.350000e-02. The

corrresponding value of the primordial helium fraction

cannot be found in the interpolation table. If you

really want this value , you should fix YHe to a given

value rather than to BBN

In the relevant part of the code, we only wrote the piece starting with “You have asked...”. All the rest was

generated automatically by the error management system. This follows from following everywhere some systematic

rules and using specif macros for calling functions; see e.g.:

Tokyo Tools/CLASS Lecture Slides/lecture5 index and error.pdf

J. Lesgourgues CLASS

14 general coding principles of class

13. Version history

Old versions can always be downloaded (from both http://class-code.net and
https://github.com/lesgourg/class public/).
In most cases, new versions feature new ingredients and avoid (whenever possible) to
modify or erase the old ones, in such a way that modifications to an old version can
still be pasted in a new version (as much as possible).

14. Git repository and GitHub website.

The code can be downloaded as a .tar.gz, or as a git repository. Then, user can
develop his own modification with the advantages of git (branching, memory of
changes...); or merge his changes with a newer version almost automatically; or submit
his modifications to the CLASS team in view of an easy merging with the public
version.
You can also raise issues there, like in a discussion forum (will be propagated to the
main CLASS developers, answering time variable)

More details on GitHub in Tokyo Tools/General Lecture Slides/git.pdf

J. Lesgourgues CLASS

14 general coding principles of class

13. Version history

Old versions can always be downloaded (from both http://class-code.net and
https://github.com/lesgourg/class public/).
In most cases, new versions feature new ingredients and avoid (whenever possible) to
modify or erase the old ones, in such a way that modifications to an old version can
still be pasted in a new version (as much as possible).

14. Git repository and GitHub website.

The code can be downloaded as a .tar.gz, or as a git repository. Then, user can
develop his own modification with the advantages of git (branching, memory of
changes...); or merge his changes with a newer version almost automatically; or submit
his modifications to the CLASS team in view of an easy merging with the public
version.
You can also raise issues there, like in a discussion forum (will be propagated to the
main CLASS developers, answering time variable)

More details on GitHub in Tokyo Tools/General Lecture Slides/git.pdf

J. Lesgourgues CLASS

Basic running

Run with any input file with (compulsory) extension *.ini:

>./class my_model.ini

Syntax inside input file:

h = 0.7

T_cmb = 2.726 # comment

output = tCl , pCl

more comments , ignored because there is no equal sign

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed fixed to default, i.e. the most reasonable or
minimalistic choice

All possible input parameters and details on the syntax explained in
explanatory.ini

This is only a reference file; we advise you never to modify it, but rather to copy
it and reduce it to a shorter and more friendly file.

For basic usage: explanatory.ini ≡ full documentation of the code

./class can take two input files *.ini and *.pre:

>./class my_model.ini some_precision.pre

But one is enough.

J. Lesgourgues CLASS

Basic running

Run with any input file with (compulsory) extension *.ini:

>./class my_model.ini

Syntax inside input file:

h = 0.7

T_cmb = 2.726 # comment

output = tCl , pCl

more comments , ignored because there is no equal sign

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed fixed to default, i.e. the most reasonable or
minimalistic choice

All possible input parameters and details on the syntax explained in
explanatory.ini

This is only a reference file; we advise you never to modify it, but rather to copy
it and reduce it to a shorter and more friendly file.

For basic usage: explanatory.ini ≡ full documentation of the code

./class can take two input files *.ini and *.pre:

>./class my_model.ini some_precision.pre

But one is enough.

J. Lesgourgues CLASS

Basic running

Run with any input file with (compulsory) extension *.ini:

>./class my_model.ini

Syntax inside input file:

h = 0.7

T_cmb = 2.726 # comment

output = tCl , pCl

more comments , ignored because there is no equal sign

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed fixed to default, i.e. the most reasonable or
minimalistic choice

All possible input parameters and details on the syntax explained in
explanatory.ini

This is only a reference file; we advise you never to modify it, but rather to copy
it and reduce it to a shorter and more friendly file.

For basic usage: explanatory.ini ≡ full documentation of the code

./class can take two input files *.ini and *.pre:

>./class my_model.ini some_precision.pre

But one is enough.

J. Lesgourgues CLASS

Basic running

For instance, we can create a very short file lcdm.ini:

* CLASS input parameter file *

----> background parameters:

H0 = 72. # km/s/Mpc

omega_b = 0.0266691

omega_cdm = 0.110616

----> thermodynamics parameters:

z_reio = 10.

----> define primordial perturbation spectra:

A_s = 2.3e-9

n_s = 1.

----> define which perturbations should be computed:

output = tCl , pCl , lCl # temp., polar., CMB lensing Cl’s

lensing = yes

----> parameters for the output spectra:

l_scalar_max = 2500

J. Lesgourgues CLASS

Basic running

Try to run the code with an even smaller input file nut.ini:

output = tCl

output_verbose =1

Run with

./class nut.ini

Check that Cl’s have been written in output/nut00 cl.dat

more output/nut00_cl.dat

Check if you run once more, the output goes automatically
to output/nut01 cl.dat and so on...

J. Lesgourgues CLASS

Basic running

Essential input parameters controlling the output (1/2); details in explanatory.ini:

modes = s,t

ic = ad, cdi , bi, nid , niv

lensing = yes

non linear = halofit

output = tCl , pCl , lCl , mPk , mTk , vTk , nCl , sCl

l_max_scalars =2500

l_max_tensors =500

l_max_lss = 1000

P_k_max_h/Mpc = 0.2

#P_k_max_1/Mpc =

z_pk = 0 #or 1,2,10

root = output/test_ #default: output/<ini_file >##_

headers = [yes/no]

format = [class/camb]

...

J. Lesgourgues CLASS

Basic running

Essential input parameters controlling the output (2/2); details in explanatory.ini:

write background = [yes/no]

write thermodynamics = [yes/no]

k_output_values = 0.01, 0.1, 0.0001 # in 1/Mpc

write primordial = [yes/no]

write parameters = [yes/no]

write warnings = [yes/no]

input_verbose = 1 # or 0, 2, 3,...

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

lensing= [yes , no]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

... and more , e.g. for nCl , sCl redshift bins

For all output in harmonic space (Cl’s), including CMB, density, lensing
potential/cosmic shear:

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when different
i.c. requested

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

lensing= [yes , no]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

... and more , e.g. for nCl , sCl redshift bins

For all output in harmonic space (Cl’s), including CMB, density, lensing
potential/cosmic shear:

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when different
i.c. requested

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

lensing= [yes , no]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

... and more , e.g. for nCl , sCl redshift bins

For all output in harmonic space (Cl’s), including CMB, density, lensing
potential/cosmic shear:

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when different
i.c. requested

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

lensing= [yes , no]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

... and more , e.g. for nCl , sCl redshift bins

For all output in harmonic space (Cl’s), including CMB, density, lensing
potential/cosmic shear:

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when different
i.c. requested

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

lensing= [yes , no]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

... and more , e.g. for nCl , sCl redshift bins

For all output in harmonic space (Cl’s), including CMB, density, lensing
potential/cosmic shear:

test_cl.dat total unlensed Cl’s

test_cl_lensed.dat total lensed Cl’s

test_cls.dat scalar Cl’s when two modes

test_clt.dat tensor Cl’s when two modes

test_cl_ad.dat, test_cl_cdi.dat, test_cl_ad_cdi.dat etc. when different
i.c. requested

Number of columns in these files can vary a lot depending on input parameters.
Always indicated in the header.

J. Lesgourgues CLASS

Basic running

Create an input file test.ini containing just
output = tCl,lCl

lensing = yes

root = output/test1_

Remember to go back to a new line at the end.

Trick: add all the verbose parameters to it with:
tail explanatory.ini >> test.ini

Run with ./class test.ini

Look at the header of output/test1_cl_lensed.dat

Repeat the test after changing to
root=output/test2_, output=tCl,pCl,lCl

Repeat the test after changing to
root=output/test3_ and adding format = camb

Remove format = camb (or equivalently, set
format = class) for the next exercises

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

output= [tCl ,pCl ,lCl ,nCl ,sCl ,mPk ,dTk ,vTk]

non linear= [none , halofit]

modes = [s,v,t]

ic = [ad , bi , cdi , nid , niv]

z_pk = [list of values]

For all output in Fourier space:

test_pk.dat matter power spectrum

test_pk_nl.dat non-linear matter power spectrum

test_pk_ad.dat, test_pk_cdi.dat, test_pk_ad_cdi.dat etc. when different
i.c. requested

test_tk.dat density and/or velocity transfer functions

test_tk_ad.dat, test_tk_cdi.dat, test_tk_ad_cdi.dat etc. when different
i.c. requested

if pk or tk requested at different redshift, several files, with extra suffix _z0,
_z1, etc.

Run with root=output/test4_, output=mPk,
and without or with the extra line z_pk=0,0.4,0.8.
In each case, look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

write background = [yes ,no]

write thermodynamics = [yes ,no]

write primordial = [yes ,no]

k_output_values = [list of values]

modes = [s,v,t]

test_background.dat background quantities versus time and redshift

test_thermodynamics.dat thermodynamical quantities versus redshift

test_primordial.dat primordial spectra (may follow from inflation simulation)

test_perturbations_k*_s[vt].dat evolution of perturbations versus time

Run with
root=output/test5_

output=tCl

k_output_values = 0.001,0.01

write background = yes

Look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

write background = [yes ,no]

write thermodynamics = [yes ,no]

write primordial = [yes ,no]

k_output_values = [list of values]

modes = [s,v,t]

test_background.dat background quantities versus time and redshift

test_thermodynamics.dat thermodynamical quantities versus redshift

test_primordial.dat primordial spectra (may follow from inflation simulation)

test_perturbations_k*_s[vt].dat evolution of perturbations versus time

Run with
root=output/test5_

output=tCl

k_output_values = 0.001,0.01

write background = yes

Look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

write background = [yes ,no]

write thermodynamics = [yes ,no]

write primordial = [yes ,no]

k_output_values = [list of values]

modes = [s,v,t]

test_background.dat background quantities versus time and redshift

test_thermodynamics.dat thermodynamical quantities versus redshift

test_primordial.dat primordial spectra (may follow from inflation simulation)

test_perturbations_k*_s[vt].dat evolution of perturbations versus time

Run with
root=output/test5_

output=tCl

k_output_values = 0.001,0.01

write background = yes

Look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

write background = [yes ,no]

write thermodynamics = [yes ,no]

write primordial = [yes ,no]

k_output_values = [list of values]

modes = [s,v,t]

test_background.dat background quantities versus time and redshift

test_thermodynamics.dat thermodynamical quantities versus redshift

test_primordial.dat primordial spectra (may follow from inflation simulation)

test_perturbations_k*_s[vt].dat evolution of perturbations versus time

Run with
root=output/test5_

output=tCl

k_output_values = 0.001,0.01

write background = yes

Look at output file names and headers.

J. Lesgourgues CLASS

Basic running

Following files created (or not) automatically (here we assume that root=test_),
depending on the content of the input fields:

write background = [yes ,no]

write thermodynamics = [yes ,no]

write primordial = [yes ,no]

k_output_values = [list of values]

modes = [s,v,t]

test_background.dat background quantities versus time and redshift

test_thermodynamics.dat thermodynamical quantities versus redshift

test_primordial.dat primordial spectra (may follow from inflation simulation)

test_perturbations_k*_s[vt].dat evolution of perturbations versus time

Run with
root=output/test5_

output=tCl

k_output_values = 0.001,0.01

write background = yes

Look at output file names and headers.

J. Lesgourgues CLASS

Plotting

You can get plots

1 Manually: using e.g. gnuplot, IDL, python, Mathematic, GNU
Octave...

2 Automatically: using python and script CPU.py, or MATLAB and script
plot CLASS output.m

3 Interactively: using CLASS as a python module, within a python

session or an iPython Notebook

J. Lesgourgues CLASS

Plotting

You can get plots

1 Manually: using e.g. gnuplot, IDL, python, Mathematic, GNU
Octave...

2 Automatically: using python and script CPU.py, or MATLAB and script
plot CLASS output.m

3 Interactively: using CLASS as a python module, within a python

session or an iPython Notebook

J. Lesgourgues CLASS

Plotting: Manual mode

Using Gnuplot

$> cd output/

$> gnuplot

gnuplot> plot ’test1_cl.dat’ using 1:2 with lines title ’Cl’

or equivalently
gnuplot> p ’test1_cl_lensing.dat’ u 1:2 w l t ’Cl’

Some additional Gnuplot commands:

Modifying scale and adding labels:
gnuplot> set logscale x

gnuplot> set ylabel ’Cl^{TT}’

Writing to a file:
gnuplot> set terminal pdf

gnuplot> set out ’my plot.pdf’

J. Lesgourgues CLASS

Plotting: Manual mode

Example of gnuplot output:

 0

 1e-10

 2e-10

 3e-10

 4e-10

 5e-10

 6e-10

 7e-10

 8e-10

 1 10 100 1000 10000

C
lTT

Cl

J. Lesgourgues CLASS

Plotting: Manual mode

Which column number?

Easy! Column number and title written automatically in file.

Example for test2_cl_lensed.dat file:

1:l 2:TT 3:EE 4:TE 5:BB 6:phiphi 7:TPhi 8:Ephi

Example for a *_background.dat file:

1:z 2:proper time [Gyr] 3:conf. time [Mpc] ...

4:H [1/Mpc] 5:comov. dist. 6:ang.diam.dist. ...

7:lum. dist. 8:comov.snd.hrz. 9:(.)rho_g ...

Example for a *_thermodynamics.dat file:

1:z 2:conf. time [Mpc] 3:x_e 4:kappa’ [Mpc^-1] ...

5:exp(-kappa) 6:g [Mpc^-1] 7:Tb [K] 8:c_b^2 9:tau_d

etc.

Other tools

Alternatives include MATLAB, Python, IDL, Mathematica, GNU Octave, . . .

J. Lesgourgues CLASS

Plotting: Automatic mode

CPU.py

CPU: CLASS Plotting Utility

Written in Python by Benjamin Audren

plot CLASS output.m

Writen in MATLAB by Thomas Tram

Compatible∗ with GNU Octave

J. Lesgourgues CLASS

Plotting: Automatic mode

CPU.py

Getting help:
python CPU.py --help

Plot certain quantities:
python CPU.py output/test5_background.dat -y rho_g rho_cdm

Plot quantities with a common string across several files:
python CPU.py output/test1_cl.dat output/test2_cl.dat -y T

Set scale: {lin,loglog,loglin,george}
python CPU.py ... --scale loglog

Set axis limits:
python CPU.py ... --xlim 0.1 10 --ylim 1e2 1e5

Save plot to PDF file:
python CPU.py ... -p

J. Lesgourgues CLASS

Plotting: Automatic mode

$> python CPU.py output/test5_background.dat

-y rho_g rho_cdm --scale loglog -p example_background.pdf

10-3 10-1 101 103 105 107 109 1011 1013

z

10-12

10-8

10-4

100

104

108

1012

1016

1020

1024

1028

1032

1036

1040

1044

test5_background: rho_g

test5_background: rho_cdm

J. Lesgourgues CLASS

Plotting: Automatic mode

$> python CPU.py output/test1_cl.dat output/test2_cl.dat

-y T --scale loglog -p example_T.pdf

100 101 102 103 104

`

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

test1_cl: TT

test1_cl: TPhi

test2_cl: TT

test2_cl: TE

test2_cl: TPhi

J. Lesgourgues CLASS

Plotting: Automatic mode

plot CLASS output.m

Getting help:
help plot_CLASS_output

Plot certain quantities:
plot_C(’test5_background.dat’,{’rho_g’,’rho_cdm’})

Plot quantities with a common string across several files:
plot_C({’test1_cl.dat’, ’test2_cl.dat’},’T’)

Set xscale and yscale:
plot_C(...,...,’xscale’,’log’,yscale’,’log’)

Set axis limits:
plot_C(...,...,’xlim’,[0.1, 10])

Specify name of EPS file:
plot_C(...,...,’EpsFilename’,’myplot.eps’)

J. Lesgourgues CLASS

Plotting: Interactive mode

Let’s look first at the python wrapper! After, you’ll see that you can

use CLASS as a Python module

call most useful CLASS functions directly from Python

get the output stored directly in Python variables

plot whatever you want with the usual functions of matplotlib,
pyplot ... (and also perform algebra on the output with numpy, etc)

J. Lesgourgues CLASS

Python wrapper

What happens when you type make (and not just make class)?

The complier:

creates the C executable class

creates a C library libclass.a

executes a code written in Cython, python/classy.pyx,
which reads libclass.a, produces a python module called
classy.py, and installs it on your computer

classy, the CLASS wrapper

Written in Cython.

Started by Karim Benabed, mainly developed by Benjamin
Audren

Needed for Monte Python and when using CLASS from
Python.

the developers need to manually implement in class.pyx

some lines for any variable or function of CLASS that should
be known by the python module.

ideas for making this step automatic and systematic in the
future...

J. Lesgourgues CLASS

Python wrapper

What happens when you type make (and not just make class)?

The complier:

creates the C executable class

creates a C library libclass.a

executes a code written in Cython, python/classy.pyx,
which reads libclass.a, produces a python module called
classy.py, and installs it on your computer

classy, the CLASS wrapper

Written in Cython.

Started by Karim Benabed, mainly developed by Benjamin
Audren

Needed for Monte Python and when using CLASS from
Python.

the developers need to manually implement in class.pyx

some lines for any variable or function of CLASS that should
be known by the python module.

ideas for making this step automatic and systematic in the
future...

J. Lesgourgues CLASS

Python wrapper

classy, the class wrapper

classy is the name of the Python module “containing the code CLASS”

Class is the name of the Python class “containing the code CLASS”
(it is defined by classy)

so, before doing anything, we need to start from:
python> from classy import Class

Running CLASS from Python:

from classy import Class

import numpy as np

import matplotlib.pyplot as plt

cosmo = Class ()

cosmo.set({’output ’:’tCl ,pCl ,lCl’,’lensing ’:’yes’})

cosmo.compute ()

The name cosmo in this exemple is optional. It is just one instance of the class Class

containing a given cosmology (= a set of input parameters and of output quantitites).
You can work with several at the same time, e.g.: lcdm = Class() and
wcdm = Class()

J. Lesgourgues CLASS

Python wrapper

Let’s do a simple plot of the lensed CTTl , CEEl for ΛCDM:

from classy import Class

import numpy as np

import matplotlib.pyplot as plt

cosmo = Class ()

cosmo.set({’output ’:’tCl ,pCl ,lCl’,’lensing ’:’yes’})

cosmo.compute ()

l = np.array(range (2 ,2501))

factor = l*(l+1) /(2*np.pi)

lensed_cl = cosmo.lensed_cl (2500)

We may want to check which “columns” are stored in the array lensed cl (= in fact
a python dictionnary):

lensed_cl.viewkeys ()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

Here t,e,b,p mean respectively temp., E and B pol., CMB lensing potential “phi”.
Final plotting steps:

plt.loglog(l,factor*lensed_cl[’tt’][2:],l,factor*lensed_cl[’

ee’][2:])

plt.xlabel(r"ℓ")

plt.ylabel(r"$\ell(\ell+1) /(2\pi) C_\ell$")

plt.tight_layout ()

plt.savefig("output/TT_EE_LambdaCDM.pdf")

J. Lesgourgues CLASS

Python wrapper

Let’s do a simple plot of the lensed CTTl , CEEl for ΛCDM:

from classy import Class

import numpy as np

import matplotlib.pyplot as plt

cosmo = Class ()

cosmo.set({’output ’:’tCl ,pCl ,lCl’,’lensing ’:’yes’})

cosmo.compute ()

l = np.array(range (2 ,2501))

factor = l*(l+1) /(2*np.pi)

lensed_cl = cosmo.lensed_cl (2500)

We may want to check which “columns” are stored in the array lensed cl (= in fact
a python dictionnary):

lensed_cl.viewkeys ()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

Here t,e,b,p mean respectively temp., E and B pol., CMB lensing potential “phi”.
Final plotting steps:

plt.loglog(l,factor*lensed_cl[’tt’][2:],l,factor*lensed_cl[’

ee’][2:])

plt.xlabel(r"ℓ")

plt.ylabel(r"$\ell(\ell+1) /(2\pi) C_\ell$")

plt.tight_layout ()

plt.savefig("output/TT_EE_LambdaCDM.pdf")

J. Lesgourgues CLASS

Python wrapper

Let’s do a simple plot of the lensed CTTl , CEEl for ΛCDM:

from classy import Class

import numpy as np

import matplotlib.pyplot as plt

cosmo = Class ()

cosmo.set({’output ’:’tCl ,pCl ,lCl’,’lensing ’:’yes’})

cosmo.compute ()

l = np.array(range (2 ,2501))

factor = l*(l+1) /(2*np.pi)

lensed_cl = cosmo.lensed_cl (2500)

We may want to check which “columns” are stored in the array lensed cl (= in fact
a python dictionnary):

lensed_cl.viewkeys ()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

Here t,e,b,p mean respectively temp., E and B pol., CMB lensing potential “phi”.
Final plotting steps:

plt.loglog(l,factor*lensed_cl[’tt’][2:],l,factor*lensed_cl[’

ee’][2:])

plt.xlabel(r"ℓ")

plt.ylabel(r"$\ell(\ell+1) /(2\pi) C_\ell$")

plt.tight_layout ()

plt.savefig("output/TT_EE_LambdaCDM.pdf")

J. Lesgourgues CLASS

Python wrapper

Let’s do a simple plot of the lensed CTTl , CEEl for ΛCDM:

from classy import Class

import numpy as np

import matplotlib.pyplot as plt

cosmo = Class ()

cosmo.set({’output ’:’tCl ,pCl ,lCl’,’lensing ’:’yes’})

cosmo.compute ()

l = np.array(range (2 ,2501))

factor = l*(l+1) /(2*np.pi)

lensed_cl = cosmo.lensed_cl (2500)

We may want to check which “columns” are stored in the array lensed cl (= in fact
a python dictionnary):

lensed_cl.viewkeys ()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

Here t,e,b,p mean respectively temp., E and B pol., CMB lensing potential “phi”.

Final plotting steps:

plt.loglog(l,factor*lensed_cl[’tt’][2:],l,factor*lensed_cl[’

ee’][2:])

plt.xlabel(r"ℓ")

plt.ylabel(r"$\ell(\ell+1) /(2\pi) C_\ell$")

plt.tight_layout ()

plt.savefig("output/TT_EE_LambdaCDM.pdf")

J. Lesgourgues CLASS

Python wrapper

Let’s do a simple plot of the lensed CTTl , CEEl for ΛCDM:

from classy import Class

import numpy as np

import matplotlib.pyplot as plt

cosmo = Class ()

cosmo.set({’output ’:’tCl ,pCl ,lCl’,’lensing ’:’yes’})

cosmo.compute ()

l = np.array(range (2 ,2501))

factor = l*(l+1) /(2*np.pi)

lensed_cl = cosmo.lensed_cl (2500)

We may want to check which “columns” are stored in the array lensed cl (= in fact
a python dictionnary):

lensed_cl.viewkeys ()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

Here t,e,b,p mean respectively temp., E and B pol., CMB lensing potential “phi”.
Final plotting steps:

plt.loglog(l,factor*lensed_cl[’tt’][2:],l,factor*lensed_cl[’

ee’][2:])

plt.xlabel(r"ℓ")

plt.ylabel(r"$\ell(\ell+1) /(2\pi) C_\ell$")

plt.tight_layout ()

plt.savefig("output/TT_EE_LambdaCDM.pdf")

J. Lesgourgues CLASS

Python wrapper

The following figure has been produced:

100 101 102 103 104

`

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9
`(
`
+

1)
/(

2π
)C

`

J. Lesgourgues CLASS

Python wrapper: IPython

IPython

ipython is nicer than python, for instance because of automatic completion with TAB
key!

J. Lesgourgues CLASS

Python wrapper: IPython notebooks

IPython Notebook

This is by far the most convenient way to work!

IPython Notebook is a Mathematica style (cell) interface to IPython.

Has TAB completion of variables and function names.

Nicely presents the documentation of each function.

Easy way to get started on Python and to use all functionalities of classy .

Your keep track of all your working session, which includes commands and plots.

You can come back to it or modify it in the future.

You can load sessions from other people.

We are setting an docker (on-line repositoryof session examples) thanks to the
mybinder.org project.

These example sessions can even be executed on-line, when this is more
convenient than downloading the notebook files.

Almost all your research (computing things, producing plots for papers) could
be done within notebooks and calling classy functions ,

J. Lesgourgues CLASS

https://github.com/ThomasTram/iCLASS

Python wrapper: IPython notebooks

IPython Notebook

This is by far the most convenient way to work!

IPython Notebook is a Mathematica style (cell) interface to IPython.

Has TAB completion of variables and function names.

Nicely presents the documentation of each function.

Easy way to get started on Python and to use all functionalities of classy .

Your keep track of all your working session, which includes commands and plots.

You can come back to it or modify it in the future.

You can load sessions from other people.

We are setting an docker (on-line repositoryof session examples) thanks to the
mybinder.org project.

These example sessions can even be executed on-line, when this is more
convenient than downloading the notebook files.

Almost all your research (computing things, producing plots for papers) could
be done within notebooks and calling classy functions ,

J. Lesgourgues CLASS

https://github.com/ThomasTram/iCLASS

Python wrapper: IPython notebooks

IPython Notebook

This is by far the most convenient way to work!

IPython Notebook is a Mathematica style (cell) interface to IPython.

Has TAB completion of variables and function names.

Nicely presents the documentation of each function.

Easy way to get started on Python and to use all functionalities of classy .

Your keep track of all your working session, which includes commands and plots.

You can come back to it or modify it in the future.

You can load sessions from other people.

We are setting an docker (on-line repositoryof session examples) thanks to the
mybinder.org project.

These example sessions can even be executed on-line, when this is more
convenient than downloading the notebook files.

Almost all your research (computing things, producing plots for papers) could
be done within notebooks and calling classy functions ,

J. Lesgourgues CLASS

https://github.com/ThomasTram/iCLASS

Python wrapper: IPython notebooks

IPython Notebook

This is by far the most convenient way to work!

IPython Notebook is a Mathematica style (cell) interface to IPython.

Has TAB completion of variables and function names.

Nicely presents the documentation of each function.

Easy way to get started on Python and to use all functionalities of classy .

Your keep track of all your working session, which includes commands and plots.

You can come back to it or modify it in the future.

You can load sessions from other people.

We are setting an docker (on-line repositoryof session examples) thanks to the
mybinder.org project.

These example sessions can even be executed on-line, when this is more
convenient than downloading the notebook files.

Almost all your research (computing things, producing plots for papers) could
be done within notebooks and calling classy functions ,

J. Lesgourgues CLASS

https://github.com/ThomasTram/iCLASS

Python wrapper: IPython notebooks

Launching IPython Notebook

To launch a new notebook:
ipython notebook

This opens a new window on browser. Then click “new” and “Python
2”

To launch an existing one (your previous session, something taken from
the net...):
ipython notebook my_notebook.ipynb

To use the docker (our online notebook server):
https://github.com/ThomasTram/iCLASS

Just choose one notebook. Then you can either run it directly on-line,
or download it.

J. Lesgourgues CLASS

https://github.com/ThomasTram/iCLASS

Python wrapper: IPython notebooks

Same example as before, within a notebook:

note the additional
line %matplotlib

inline

(necessary to visualise
figure inside
notebook)

you can save the
figure separately in a
file

J. Lesgourgues CLASS

Python wrapper: IPython notebooks

Current aspect of the docker (we will improve the presentation!):

J. Lesgourgues CLASS

Python wrapper: IPython notebooks

For instance, neutrinohierarchy.ipynb shows how to plot the ratio of P (k) in the
normal/inverted hierarchy model for a fixed value of the total neutrino mass, given
neutrino oscillation data:

J. Lesgourgues CLASS

Python wrapper: IPython notebooks

The TAB key after the dot gives you the list of available classy methods (= available
functions and quantities) in a scrolling menu:

J. Lesgourgues CLASS

Python wrapper: IPython notebooks

The TAB+SHIFT keys after the () gives you a short doc on each method (expand it
by clicking +):

J. Lesgourgues CLASS

Python wrapper: IPython notebooks

Example for getting derived quantities, such as the usual 100 θs (related to angular
scale of the CMB peaks), and the BAO angle at redshift z = 1.2:

J. Lesgourgues CLASS

This is the end...

Now you can train more with exercises 0, 1a, 1b, 1c, 1d of the Tokyo Dropbox:

https:

//www.dropbox.com/sh/ma5muh76sggwk8k/AABl_DDUBEzAjjdywMjeTya2a?dl=0

They are in:
Tokyo Tools/CLASS Exercises/exercises.pdf

You can first try first the “old-school” way, using the terminal, output files, plotting
scripts: detailed correction in:
Tokyo Tools/CLASS Exercises/exercises correction.pdf

Or try directly with the notebook, partial correction in:
Tokyo Tools/IPython Notebooks

and also in the docker.

You can contact me at lesgourg@physik.rwth-aachen.de, or Thomas at
thomas.tram@port.ac.uk, or raise issues on GitHub!

J. Lesgourgues CLASS

https://www.dropbox.com/sh/ma5muh76sggwk8k/AABl_DDUBEzAjjdywMjeTya2a?dl=0
https://www.dropbox.com/sh/ma5muh76sggwk8k/AABl_DDUBEzAjjdywMjeTya2a?dl=0
https://github.com/ThomasTram/iCLASS

