
CLASS
the Cosmological Linear Anisotropy Solving System1

Julien Lesgourgues
TTK, RWTH Aachen University

CCA, New York, 15-16.07.2019

1code developed by Julien Lesgourgues & Thomas Tram plus many others...

15-16.07.2019 J. Lesgourgues CLASS Basics 1/22

class in New York

• Basics: Coding spirit and general rules
• Theory: Physical assumptions in the code
• Usage I: From interactive runs to python scripts / jupyter notebooks
• Usage II: Exploring the code possibilities through more advanced notebooks
• Coding I: Essential rules and conventions specific to the code
• Coding II: How to implement new physics and new ingredients
• News: Expected content of next releases and more long-term projects

• Exercise I: Extracting and plotting various quantities
• Exercise II: Modifying the code

15-16.07.2019 J. Lesgourgues CLASS Basics 2/22

Context

class is the 5th public Einstein-Boltzmann solver covering all basic cosmology:

1 COSMICS package in f77 (Bertschinger 1995)
Basic equations, brute-force CTTl

2 CMBFAST in f77 (Seljak & Zaldarriaga 1996)

Line-of-sight, CEE,TE,BBl , open universe, CMB lensing

3 CAMB in f90/2000 (Lewis & Challinor 1999)
closed universe, better lensing, new algorithms, new approximations, new
species, new observables... (http://camb.info)

4 CMBEASY in C++ (Doran 2003)

5 class in C (Lesgourgues & Tram 2011)
simpler polarisation equations, new algorithms, new approximations, new
species, new observables... (http://class-code.net)

... and there might still be 1 or 2 more! But only CAMB and class are currently
developed and kept to high precision level.

15-16.07.2019 J. Lesgourgues CLASS Basics 3/22

http://camb.info
http://class-code.net

Context

Project started on request of Planck science team, in order to have a tool independent
from CAMB, and check for possible Boltzmann-code-induced bias in parameter
extraction. The class-CAMB comparison has triggered progress in the accuracy of
both codes. Agreement established at 10−4 (0.01%) level for CMB observables, using
highest-precision settings in both codes. But the class projected expanded and went
much further than the initial Planck purposes.

class aims at being:

general (more models, more output/observables)

modern (structured, modular, flexible, wrap-able: wrapper for python, C++,
automatic precision test code)

user friendly (documented, structured, easy to understand) and hence easier to
modify (coding additional models/observables)

accurate and fast (currently comparable to CAMB; in principle, clear structure
offers potential for further optimisation/parallelisation/vectorisation/etc.)

15-16.07.2019 J. Lesgourgues CLASS Basics 4/22

With class you can get:

The CMB anisotropy spectra:

101 102 10310 8

10 6

10 4

10 2

100

(
+

1)
C

XY l
/2

[×
10

10
]

r = 0.1

TT(s)
EE(s)
TT(t)
EE(t)
BB(t)
BB(lensing)

15-16.07.2019 J. Lesgourgues CLASS Basics 5/22

With class you can get:

The CMB temperature spectrum decomposition:

101 102 103

0

1

2

3

4

5

6

7

(
+

1)
C

TT l
/2

[×
10

10
]

T + SW
earlyISW
lateISW
Doppler
total
lensed

15-16.07.2019 J. Lesgourgues CLASS Basics 6/22

With class you can get:

The matter power spectrum:

10-4 10-3 10-2 10-1 100

k (h/Mpc)

10-1

100

101

102

103

104

105
P
(k

)
(h

/M
p
c)

3
Matter power spectrum: linear, HALOFIT

z=0: linear

z=0: nonlinear

z=2: linear

z=2: nonlinear

15-16.07.2019 J. Lesgourgues CLASS Basics 7/22

With class you can get:

The transfer functions at a given time/redshift (e.g. initial conditions for N-body):

10-4 10-3 10-2 10-1 100 101

k (h/Mpc)

10-4

10-3

10-2

10-1

100

101

102

103

104

−
δ(
k
,t
)/
R

(k
,τ
in
i)

density transfer functions at z=100

δγ

δb

δcdm

δur

15-16.07.2019 J. Lesgourgues CLASS Basics 8/22

With class you can get:

The matter density (number count) Cl’s, or the lensing Cl’s (with arbitrary
selection/window functions):

101 102

l

10-13

10-12

10-11

10-10

10-9

10-8

10-7
[`

(`
+

1)
]2
C
φ
φ

l
/2
π

lensing potential spectrum (gaussians bins, ∆z=0.1)

linear: z=0.1

linear: z=0.3

linear: z=0.5

halofit: z=0.1

halofit: z=0.3

halofit: z=0.5

15-16.07.2019 J. Lesgourgues CLASS Basics 9/22

With class you can get:

The background evolution in a given cosmological model:

100 101 102 103 104

conformal time [Mpc]

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

1012

d
e
n
si

ti
e
s

[M
p
c2

]

ργ

ρb

ρcdm

ρν

ρΛ

10 1 100 101

z

10 1

100

101

Di
st

an
ce

×
H

0

lum. dist.
comov. dist.
ang.diam.dist.

15-16.07.2019 J. Lesgourgues CLASS Basics 10/22

With class you can get:

The thermal history in a given cosmological model:

100 101 102 103 104

z

10-4

10-3

10-2

10-1

100

xe

102 103 104

[Mpc]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

vi
sib

ilit
y

g
[M

pc
1]

15-16.07.2019 J. Lesgourgues CLASS Basics 11/22

With class you can get:

The time evolution of perturbations for individual Fourier modes:

10-1 100 101 102 103 104

tau [Mpc]

10-2

10-1

100

101

102

103

104

105
k=1 h/Mpc, normalised to R(k,auini) =1

|δγ |
|δb |
|δν |
|δcdm|

15-16.07.2019 J. Lesgourgues CLASS Basics 12/22

With class you can get:

... and several other quantities, for instance:

distance–redshift relations, sound horizon, characteristic redshifts;

primordial spectrum for given inflationary potential;

decomposition of CMB Cl’s in intrinsic, Sachs-Wolfe, Doppler, ISW, etc.;

decomposition of galaxy number count Cl’s in density, RSD, lensing, etc.;

...

15-16.07.2019 J. Lesgourgues CLASS Basics 13/22

With class you can get:

... if you use class as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various ways, and make all kinds of
computations or nice plots:

101 102 103

Multipole
0.85

0.90

0.95

1.00

C
TT

/C
TT

(N
ef

f=
3.

04
6)

Neff = 0.5
Neff = 1
Neff = 1.5
Neff = 2

10 3 10 2 10 1 100

k [h 1Mpc]

1.00

1.05

1.10

1.15

1.20

P(
k)

/P
(k

)[N
ef

f=
3.

04
6] Neff = 0.5

Neff = 1
Neff = 1.5
Neff = 2

15-16.07.2019 J. Lesgourgues CLASS Basics 14/22

With class you can get:

... if you use class as a python module you can extract all kind of output or
intermediate quantities, manipulate them in various ways, and make all kinds of
computations or nice plots:

15-16.07.2019 J. Lesgourgues CLASS Basics 15/22

With class you can get:

... all this for a wide range of cosmological models: all those implemented in the
public CAMB code, plus several other ingredients, especially in the sectors of:

primordial perturbations (internal inflationary perturbation module with given
V (φ), takes arbitrary BSI spectra, correlated isocurvature modes),

neutrinos (chemical potentials, arbitrary phase-space distributions, flavor
mixing...),

Dark Matter (warm, annihilating, decaying, interacting...),

Dark Energy (fluid with flexible w(a) + sound speed, quintessence with given
V (φ))

also Modified Gravity if you try the recently released HiCLASS branch (Bellini,
Sawicki, Zumalacarregui, http://www.hiclass-code.net)

multi-gauge (synchronous, newtonian...)

extension to second-order perturbation theory: SONG (Fidler, Pettinari, Tram,
https://github.com/coccoinomane/song)

interfacing with particle physics modules and codes for exotic energy injection
available in ExoCLASS branch of
http://github.com/lesgourg/class_public.git (Stöcker, Poulin)

15-16.07.2019 J. Lesgourgues CLASS Basics 16/22

http://www.hiclass-code.net
https://github.com/coccoinomane/song
http://github.com/lesgourg/class_public.git

With class you can get:

... and movies of CMB perturbations in 2D slices of early universe with our Real space
graphical interface (part of public package since v2.7.0); here is a snapshot:

15-16.07.2019 J. Lesgourgues CLASS Basics 17/22

class coding spirit

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

15-16.07.2019 J. Lesgourgues CLASS Basics 18/22

class coding spirit

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

15-16.07.2019 J. Lesgourgues CLASS Basics 18/22

class coding spirit

Equations follow literally notations of most famous papers

(in particular Ma & Bertschinger 1996, astro-ph/9506072).
Multi-gauge code: everything coded in newtonian and synchronous gauge, structure
ready for more gauges.

Input parameters interpreted and processed into final form needed by the modules

Some basic logic has been incorporated in the code. Easy to elaborate further.
Examples: • expects only one out of {H0, h, 100× θs}, otherwise complains;

• missing ones inferred from given one
• same with {Tcmb, Ωγ , ωγ}, {Ωncdm, ωncdm, mν}, {Ωur, ωur, Nur},...

Homogeneous units

Inside all modules except thermodynamics: everything in Mpcn.

Examples: • conformal time τ in Mpc, H = a′

a2
in Mpc−1

• ρclass ≡ 8πG
3
ρphysical in Mpc−2, such that H2 =

∑
i ρi

• k in Mpc−1, P (k) in Mpc3

15-16.07.2019 J. Lesgourgues CLASS Basics 18/22

class coding spirit

Accessible and self-contained

Plain C (for performance and readability) but mimicking features of C++ (see later).
No external libraries for a quick installation (but parallelisation requires OpenMP).
Lots of comments in the code.
Automatic doxygen documentation (Credits Deanna C. Hooper)

Structured and flexible

Sequence of ten modules with distinct physical tasks, no duplicate equations.

15-16.07.2019 J. Lesgourgues CLASS Basics 19/22

class coding spirit

Accessible and self-contained

Plain C (for performance and readability) but mimicking features of C++ (see later).
No external libraries for a quick installation (but parallelisation requires OpenMP).
Lots of comments in the code.
Automatic doxygen documentation (Credits Deanna C. Hooper)

Structured and flexible

Sequence of ten modules with distinct physical tasks, no duplicate equations.

15-16.07.2019 J. Lesgourgues CLASS Basics 19/22

class coding spirit

Plethoric accumulation of extended models/observables/features without making the
code slower or less readable

Relies on homogeneous style and strict rules (e.g. anything related to given feature is
inside an: if (has_feature == _TRUE_){...})

No hard-coding

All indices allocated dynamically (according to strict and homogeneous rules for
more readability): see dedicated section in “Coding I” lecture

All arrays allocated dynamically

Essentially no number found in the codes except factors in physical equations

No hard-coded precision parameters, all precision-related numbers/flags
gathered in single structure precision

Not a single global variable: all variables passed as arguments of functions (for
readability and parallelisation)

Sampling steps inferred dynamically by the code for each model

Time for switching approximations on/off inferred dynamically by the code for
each model

15-16.07.2019 J. Lesgourgues CLASS Basics 20/22

class coding spirit

Plethoric accumulation of extended models/observables/features without making the
code slower or less readable

Relies on homogeneous style and strict rules (e.g. anything related to given feature is
inside an: if (has_feature == _TRUE_){...})

No hard-coding

All indices allocated dynamically (according to strict and homogeneous rules for
more readability): see dedicated section in “Coding I” lecture

All arrays allocated dynamically

Essentially no number found in the codes except factors in physical equations

No hard-coded precision parameters, all precision-related numbers/flags
gathered in single structure precision

Not a single global variable: all variables passed as arguments of functions (for
readability and parallelisation)

Sampling steps inferred dynamically by the code for each model

Time for switching approximations on/off inferred dynamically by the code for
each model

15-16.07.2019 J. Lesgourgues CLASS Basics 20/22

class coding spirit

Rigorous error management

In principle, no segmentation faults when executing public class.
When class fails, it returns an error message with a tree-like information (like e.g.
python)
We’ll see how this works in “Coding I” ...

Version history

All previous versions can be downloaded and compared on GitHub, changes
documented in class-code.net

Always aim at developing without breaking compatibility with older versions.
Own changes can often be merged in newer version with git merge.

15-16.07.2019 J. Lesgourgues CLASS Basics 21/22

class coding spirit

Rigorous error management

In principle, no segmentation faults when executing public class.
When class fails, it returns an error message with a tree-like information (like e.g.
python)
We’ll see how this works in “Coding I” ...

Version history

All previous versions can be downloaded and compared on GitHub, changes
documented in class-code.net

Always aim at developing without breaking compatibility with older versions.
Own changes can often be merged in newer version with git merge.

15-16.07.2019 J. Lesgourgues CLASS Basics 21/22

Installation

Installation should be straightforward on Linux, and slightly tricky but still easy on
Mac. We suggest to not even try on Windows.
We really recommend cloning the code from GitHub. The old-fashioned way, i.e.
downloading a .tar.gz, also works.
In the ideal case you would just need to type in your terminal

> git clone http:// github.com/lesgourg/ class_public .git

class

> cd class/

> make clean;make -j

and you would be done. To check whether the C code is correctly installed, you can
type

> ./class explanatory.ini

which should run the code and write some output on the terminal. To check whether
the python wrapper installation also worked, try

> python

>>> from classy import Class

>>>

and just check that python does not complain. If any of these steps does not work,
please look at the detailed installation instructions at
https://github.com/lesgourg/class_public/wiki/Installation

15-16.07.2019 J. Lesgourgues CLASS Basics 22/22

https://github.com/lesgourg/class_public/wiki/Installation

