CLASS

the Cosmological Linear Anisotropy Solving System!

class.c

Julien Lesgourgues
TTK, RWTH Aachen University

U. di Padova, 15-16.11.2021

1 code developed by Julien Lesgourgues & Thomas Tram plus many others

15-16.11.2021 J. Lesgourgues CLASS Coding 1/39



installation, running, documentation

python wrapper, using scripts and notebooks
dynamical indexing rules

error management rules

adding features

adding parameters in the wrapper

o
(2]
o
@ input management
o
(6
(7]
o

interface with samplers

«40O> «Fr «=)r « =)

DA



Installation

Installation should be straightforward on Linux, and a bit more tricky but still easy on
Mac. We suggest to not even try on other OSs.

We recommend cloning the code from GitHub. The old-fashioned way, i.e.
downloading a .tar.gz, also works.

In the ideal case you would just need to type in your terminal

> git clone http://github.com/lesgourg/class_public.git
class

> cd class/

> make clean;make -j

and you would be done. To check whether the C code is correctly installed, you can
type

> ./class explanatory.ini

which should run the code and write some output on the terminal. To check whether
the python wrapper installation also worked, try

> python
>>> from classy import Class
>>>

and just check that python does not complain. If any of these steps does not work,
please look at the detailed installation instructions at
https://github.com/lesgourg/class_public/wiki/Installation

15-16.11.2021 J. Lesgourgues CLASS Coding 3/39


https://github.com/lesgourg/class_public/wiki/Installation

Once the code is installed, where do | find documentation?

@ Basic information and links:
@ in the historical CLASS webpage http://class-code.net
@ in the online documentation page (from the previous page, or from
https://github.com/lesgourg/class_public/wiki, clik on the link
online html documentation), in the first two subsections:
@ CLASS: Cosmic Linear Anisotropy Solving System
@ Where to find information and documentation on CLASS?
@ CLASS overview (architecture, input/output, general principles)

© More advanced:
@ several detailed courses at different levels on my course webpage
https://lesgourg.github.io/courses.html, especially the New York
CCA course (slides+videos); this lecture will be added there too.
@ full automatically-generated documentation (including dependence trees)
on the online html documentation, in the last sections: Data

Structures, Files.

15-16.11.2021 J. Lesgourgues CLASS Coding 4/39


http://class-code.net
https://github.com/lesgourg/class_public/wiki
https://lesgourg.github.io/courses.html

class/ directory

In your class directory (e.g. class_public-3.0.2/), you should see:

cpp/ # C++ wrapper of CLASS
doc/ # the automatic documentation in PDF
external/# embedded codes: HyRec, BBN interpolation table,
# input for CMB distortionmns,
include/ # header files (*.h) containing declarations
main/ # main CLASS function: short, just calls 10 modules
notebooks/ # examples of useful jupyter notebooks
output/ # directory for output files
python/ # python wrapper of CLASS
scripts/ # same as notebooks in python script format
source/ # the 10 modules of CLASS: ALL THE PHYSICS
test/ # other main functions for testing part of the code
tools/ # auxiliary pieces of code (numerical methods):
# ALL THE MATH (no external C library)
explanatory.ini # reference input file

+ plenty of other input files (e.g. with Planck best fit)
+ plenty of precision setting files

CPU.py #

plot _CLASS_

small python plotting script
output.m # same for MatLab

u}
8]
I
i
it

15-16.11.2021 J. Lesgourgues CLASS Coding 5/39




Running in terminal with input file (old fashioned)

Try for instance:
> ./class default.ini
It gives some output:

Reading input parameters
-> matched budget equations by adjusting Omega_Lambda =
0.690026
Running CLASS version v3.0.1
# selected lines from the output:
-> age = 13.797336 Gyr
-> radiation/matter equality at z = 3406.907947
-> recombination at z = 1088.798382
-> reionization at z = 7.681290
-> sigma8=0.811718 (computed till k = 8.44246 h/Mpc)
€ooo)d
Writing output files in output/defaultO4_...

15-16.11.2021 J. Lesgourgues CLASS Coding 6/39



Running in terminal with input file (old fashioned)

Try for instance:
> ./class default.ini
It gives some output:

Reading input parameters
-> matched budget equations by adjusting Omega_Lambda =
0.690026
Running CLASS version v3.0.1
# selected lines from the output:
-> age = 13.797336 Gyr
-> radiation/matter equality at z = 3406.907947
-> recombination at z = 1088.798382
-> reionization at z = 7.681290
-> sigma8=0.811718 (computed till k = 8.44246 h/Mpc)
€ooo)d
Writing output files in output/defaultO4_...

@ Chatty behavior comes from 10 verbose parameters fixed to 1 in default.ini;
see them with

> tail default.ini

15-16.11.2021 J. Lesgourgues CLASS Coding 6/39



Running in terminal with input file (old fashioned)

Run with your own input file with (compulsory) extension *.ini:
>./class my_model.ini
With for instance:

output = tCl,pCl,1Cl,mPk

lensing = yes # include CMB lensing effect

non linear = halofit # non-linear P(k) from HALOFIT
root = output/my_model_

write warnings = yes # will alert you if wrong input syntax

Omega_b = 0.05
more comments, ignored because no equal sign in this line
# comment with an =, still ignored thanks to the sharp

15-16.11.2021 J. Lesgourgues CLASS Coding 7/39



Running in terminal with input file (old fashioned)

Run with your own input file with (compulsory) extension *.ini:
>./class my_model.ini
With for instance:

output = tCl,pCl,1Cl,mPk

lensing = yes # include CMB lensing effect

non linear = halofit # non-linear P(k) from HALOFIT
root = output/my_model_

write warnings = yes # will alert you if wrong input syntax

Omega_b = 0.05
more comments, ignored because no equal sign in this line
# comment with an =, still ignored thanks to the sharp

@ Order of lines doesn't matter at all.

@ All parameters not passed are fixed to default, i.e. the most reasonable or
minimalistic choice (ACDM with Planck 2013 bestfit)

@ ./class can take two input files *.ini and *.pre:
>./class my_model.ini cl_permille.pre

But one is enough.

15-16.11.2021 J. Lesgourgues CLASS Coding 7/39



Running in terminal with input file (old fashioned)

Results are in several files output/my_model_x.dat
Can be quickly plotted with provided python script CPU.py (Class Plotting Unit):

> python CPU.py output/my_model_cl_lensed.dat
> python CPU.py output/my_model_cl.dat -y TT --scale loglin
> python CPU.py output/my_model_pk.dat

with options visible with

> python CPU.py --help

le-10

—— my_model_cl: TT

—— my_model_pk: P(Mpc/h)~3

10! 107 10° 105 104 1072 102 107! 10° 10!

L k (h/Mpc)

15-16.11.2021 J. Lesgourgues CLASS Coding 8/39



Running in terminal with input file (old fashioned)

Results are in several files output/my_model_x.dat
Can be quickly plotted with provided python script CPU.py (Class Plotting Unit):

> python CPU.py output/my_model_cl_lensed.dat
> python CPU.py output/my_model_cl.dat -y TT --scale loglin
> python CPU.py output/my_model_pk.dat

with options visible with
> python CPU.py --help

le-10

—— my_model_cl: TT

—— my_model_pk: P(Mpc/h)~3

10* 107 10° 107 107 107 1077 107! 10° 10t
L k (h/Mpc)
Also provide similar MATLAB script plot_CLASS_output.m, get syntax with

help plot_class_output

15-16.11.2021 J. Lesgourgues CLASS Coding 8/39



Species in public class

photons: T_cmb or Omega_g or omega_g
baryons: Omega_b or omega_b
ultra-relativistic species (massless neutrinos): N_ur or Omega_ur or omega_ur

cold dark matter: Omega_cdm or omega_cdm (possibly annihilating:
annihilation, etc.)

N_ncdm distinct non-cold dark matter species (massive neutrinos, warm dark
matter...): m_ncdm or Omega_ncdm or omega_ncdm plus lots of options

cold dark matter decaying into dark radiation: Omega_dcdmdr or omega_dcdmdr
plus Gamma_dcdm

cold dark matter interacting with dark radiation: Omega_idm_dr or
omega_idm_dr plus cross-section, )

coming soon: dark matter interacting with photons and/or baryons and/or dark
radiation

dark radiation interacting with dark matter and/or with itself: N_idr, plus
cross-sections, ...

spatial curvature Omega_k

cosmological constant Omega_Lambda

fluid Omega_£1d plus wO_£f1d, wa_£f1d, cs2_f1d, etc.
scalar field (quintessence) Omega_scf plus specifications

All details are in explanatory.ini
(densities can all be set to zero, excepted photons and baryons)

15-16.11.2021 J. Lesgourgues CLASS Coding 9/39



Species in public class

Budget equation:
Z Qx =14+ Q
X

To avoid over-constraining the input, one of the last three (Omega_Lambda, Omega_£f1d,
Omega_scf) must be left unspecified and class will assign it using budget equation.

@ default: Omega_Lambda is automatically adjusted, assuming Omega_£f1d =
Omega_scf = 0.

@ if you pass Omega_Lambda = 0: Omega_f1d is automatically adjusted, assuming
Omega_scf = 0.

@ if you pass Omega_Lambda = 0 and Omega_fld = 0: Omega_scf is automatically
adjusted.

Allows whatever combination.

E.g. to replace A by a dynamical DE fluid with (wo,wq) = (—0.9,0.1):
Omega_Lambda=0.

w0_£1d=0.9

wa_f1d=0.1

15-16.11.2021 J. Lesgourgues CLASS Coding 10/39



Running class from python

class as a Python module
@ based on wrapper located in python/classy.pyx (developed initially by
B. Audren and extended by many others)
@ the compilation produces a python module classy.py and installs it on
your computer (can be called from anywhere)

@ wrapper written in Cython, encapsulates most useful class
variables/functions, contains extra functions (e.g.
MontePython-motivated)

@ goal: obtain, manipulate and plot the results directly within (i)python
scripts or notebooks (recommended)

4

@ we will now discuss several examples of scrips/notebooks which are available in
scripts/ and notebooks/ (should work with python 2.7 or 3)

@ with jupyter installed, open the notebooks with e.g.

> jupyter notebook notebooks/warmup.ipnyb

@ if you can't make it with jupyter, you'll get the same results with

> python scripts/warmup.py

15-16.11.2021 J. Lesgourgues CLASS Coding 11/39



Python wrapper

First basic example (notebooks/warmup.ipynb or scripts/warmup.py)

# import classy module
from classy import Class

# create instance of the class "Class'

LambdaCDM = Class ()

# pass input parameters

LambdaCDM.set ({’omega_b’:0.0223828, ’omega_cdm’:0.1201075,’h’:0.67810, A_s’
:2.100549e-09,’n_s’:0.9660499, tau_reio’:0.05430842})

LambdaCDM.set ({’output’:’tCl,pCl,1Cl,mPk’,’lensing’:’yes’,’P_k_max_1/Mpc’:3.0})

# run class

LambdaCDM. compute ()

# get all C_1 output

cls = LambdaCDM.lensed_cl (2500)
# To check the format of cls
cls.keys ()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

11 = cls[’el1’1[2:]
clTT = cls[’tt’][2:]
clEE = cls[’ee’][2:]
clPP = cls[’pp’][2:]

u}
8]
I
i
it

15-16.11.2021 J. Lesgourgues CLASS Coding 12/39




First basic example (notebooks/warmup.ipynb or scripts/warmup.py)

import matplotlib.pyplot as plt
from math import pi

# plot C_1°TT

plt.figure (1)
plt.xscale(’log’);plt.yscale(’linear’);plt.x1lim(2,2500)
plt.xlabel (r’$\ell$’)

plt.ylabel(r’$[\ell(\ell+1)/2\pi]l C_\ell " \mathrm{TT}$’)
plt.plot (11,clTT*11*(11+1)/2./pi,’ ’r-")

le-10

[+ 172"
N ow s e e N

plt.savefig(’warmup_cltt.pdf’)

v
it
-
[y

DA



First basic example (notebooks/warmup.ipynb or scripts/warmup.py)

# get P(k) at redhsift z=0
import numpy as np
kk = np.logspace(-4,np.logl10(3) ,1000) # k in h/Mpc
Pk = [1 # P(k) in (Mpc/h)*%3
h = LambdaCDM.h() # get reduced Hubble for conversions to 1/Mpc
for k in kk:
Pk.append (LambdaCDM.pk(k*h,0.)*h*x3) # function .pk(k,z)

# plot P(k)

plt.figure(2)
plt.xscale(’log’);plt.yscale(’log’);plt.x1lim(kk([0],kk[-1])
plt.xlabel(r’$k \,\,\,\, [h/\mathrm{Mpc}]1$’)
plt.ylabel (r’$P (k) \,\,\,\, [\mathrm{Mpc}/h]"3$’)

plt.plot (kk,Pk,’b-’)

10t

PR (MpcinP

100

1074 0 oo 0! o0
K (hMpe)

plt.savefig(’warmup_pk.pdf’)

v
[y

DA




Python wrapper: IPython notebooks

The TAB key after the dot gives you the list of available classy methods (= available
functions and quantities) in a scrolling menu:

In [1]: from classy import Class
cosmo = Class()

In [ ]: cosmo.|
cosmo. Hubble

cosmo.Neff
cosmo.Omega0_m
cosmo.Omega_b
cosmo.Omega_m
cosmo.Omega_nu
cosmo.T_cmb

cosmo.age
cosmo.angular_distance
cosmo.baryon_temperature

15-16.11.2021 J. Lesgourgues CLASS Coding 15/39



The TAB+SHIFT keys after the () gives you a short doc on each method (expand it
by clicking +):

In [1]: from classy import Class
cosmo = Class()
‘ In [ ]: lcesmo.angular_distance() ”

Docstring:
angular_distance(z)

Return the angular diameter distance (exactly, the quantity defined by Class
as index bg_ang_distance in the background module)

Parameters

z : float
Desired redshift
Type: builtin_function_or_method




Library of scripts and notebooks downloaded together with public code, meant to let
you understand specific aspects:

@ warmup — basic plotting of most common observables

@ cl_ST — tensor contribution to CMB

@ cltt_terms — decomposition of temperature C; in SW, Doppler, ISW, ...

@ distances — plotting background quantitites

@ thermo — plotting thermodynamical quantitites

@ one_k — transfer functions for given k versus time

@ one_time — transfer functions for given time versus k

@ many_times — colored surface for transfer function versus time and &

@ varying_pann — showing impact of variation of one parameter

@ varying Neff — similar (more advanced)

@ neutrinohierarchy — playing with multiple neutrino masses

@ check_PPF_approx —(technical) check consistency of Parametrized
Post-Friedmann description of fluid DE crossing phantom divide

@ Growth_with_w —(technical) compute growth factor with fluid DE

15-16.11.2021 J. Lesgourgues CLASS Coding 17/39



@ Indexing is very generic in CLASS, same rules apply everywhere.

it
-
a
it
v

40> «F»r < Q>




@ Indexing is very generic in CLASS, same rules apply everywhere.
(stored in the background table).

@ Example: we want to define the indices of a vector of background quantities

DA

a
u}
v
a
v
a
it
-
a
it
v
[y



@ Indexing is very generic in CLASS, same rules apply everywhere.
(stored in the background table).

@ Example: we want to define the indices of a vector of background quantities

@ We choose an abreviation of 2 letters for these indices, _bg_.

DA

a
u}
v
a
v
a

it

-
it
v

[y



Dynamical indexing rules in class

@ Indexing is very generic in CLASS, same rules apply everywhere.

@ Example: we want to define the indices of a vector of background quantities
(stored in the background table).

@ We choose an abreviation of 2 letters for these indices, _bg_.

@ Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39



Dynamical indexing rules in class

@ Indexing is very generic in CLASS, same rules apply everywhere.

@ Example: we want to define the indices of a vector of background quantities
(stored in the background table).

@ We choose an abreviation of 2 letters for these indices, _bg_.

@ Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

@ We also declare flags saying whether these indices need to be defined or not.

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39



Dynamical indexing rules in class

In include/background.h:

struct background {

*/

/** input parameters with assigned in the input modulex*
double OmegaO_cdm;

/*% flags and indices **/
int has_cdm;

// can take values
int

or

_TRUE_ _FALSE_
index_bg_rho_cdm;

int bg_size;

/**

interpolation table **/
double * background_table;

15-16.11.2021

J. Lesgourgues

]
CLASS Coding

19/39



Dynamical indexing rules in class

In source/background.c, the function background_indices () called at the
beginning of background_init () assigns numerical value to indices, that the user will
never need to know (quantities always written symbolically as

y [pba->index_bg_rho_cdm])

int background_indices(pba,...) {
/* initialize all flags */
if (pba->0OmegalO_cdm != 0.)
pba->has_cdm = _TRUE_;

/* initialize all indices */

index_bg=0;

class_define_index (pba->index_bg_rho_cdm,
pba->has_cdm,
index_bg,
1);

class_define_index (pba->index_bg_rho_fld,
pba->has_f1ld,
index_bg,
1)

pba->bg_size = index_bg;

15-16.11.2021 J. Lesgourgues CLASS Coding 20/39



Dynamical indexing rules in class

This logic is followed everywhere for all groups of indices! Examples:

@ in background.c: index.bg_... for all background variables {A,B,C}

@ in background.c: index_bi_... for backg. var. {B,C} integrated over time

@ in thermodynamics.c: index_th_... for all thermodynamics variables

@ in perturbations.c: index_pt_... perturbation var. integrated over time

@ in perturbations.c: indexmt_... metric perturbations

@ in perturbations.c: indexmd_... list of modes (scalar, vector, tensor)

@ in perturbations.c: index_ic_... list of initial conditions (AD, CDI, NID...)

@ in perturbations.c: index_tp_... list of type of required source
(temperature, polarisation, matter fluctuation...)

@ in perturbations.c: index_ap-... list of approximations that may be used

@ etc. etc.

Check in your include/*.h files!

15-16.11.2021 J. Lesgourgues CLASS Coding 21/39



Input management in class

Terminal Python wrapper

file xxx.ini
A
input_init_from_argument(...)
(parser) .set(...)

1

struct file_content fc; (all parameter names/values stored as arrays of strings)

input_init(...)
+
input_read_parameters(...)
(assign all default values + interprete input + update some parameters)

1

relevant parameters only get stored in the structures of each module

For special parameters requiring a shooting method: repeated calls of
input_read_parameters(...) from input_init(...) until shooting target is met.

15-16.11.2021 J. Lesgourgues CLASS Coding 22/39



Input management in class

For normal parameters (no shooting): example of CDM density:

/** - (Omega_O_cdm (CDM) */
class_call(parser_read_double (pfc,"Omega_cdm" ,&paraml ,&
flagl ,errmsg),
errmsg,
errmsg) ;
class_call (parser_read_double (pfc,"omega_cdm" ,&param2 ,&
flag2,errmsg),
errmsg,
errmsg) ;
class_test (((flagl == _TRUE_) && (flag2 == _TRUE_)),
errmsg,
"In input file, you can only enter one of
Omega_cdm or omega_cdm, choose one");

if (flagl == _TRUE_)
pba->0OmegaO_cdm = paraml;
if (flag2 == _TRUE_)

pba->0megal0_cdm = param2/pba->h/pba->h;

15-16.11.2021 J. Lesgourgues CLASS Coding 23/39



Input management in class

For shooting parameters, establish mapping between target parameter, unknown

parameter and level. Currently:

Pdcdm

target parameter | unknown parameter level
100 x 04 h thermodynamics
os Ag fourier
Qdedm ini background

... plus a few others (alternative parametrizations of decaying CDM, quintessence

parameters).

If you need to add such parameters: see how it is done e.g. for 100*xtheta_s and

replicate the structure!

15-16.11.2021 J. Lesgourgues

CLASS Coding




Run with an input file containing only
omega_b =

0.07

«0)>» «F>»

it
-
a
it
v

DA




Error management rules in class

By following a few general rules, we get automatically some very informative error
messages like:

Error in thermodynamics_init

=>thermodynamics_init (L:292) :error in
thermodynamics_helium_from_bbn (ppr,pba,pth);

=>thermodynamics_helium_from_bbn(L:1031) :condition (omega_b
> omegab[num_omegab-1]) is true; You have asked for an
unrealistic high value omega_b = 7.e-02. The
corrresponding value of the primordial helium fraction
cannot be found in the interpolation table. If you
really want this value, you should fix YHe to a given
value rather than to BBN

We only wrote the piece starting with “You have asked...”. All the rest was
generated automatically by the code. This follows from following everywhere 5 rules.

15-16.11.2021 J. Lesgourgues CLASS Coding 26/39



All functions are of type int, and return either _SUCCESS_ or _FAILURE_ (defined
internally in include/common.h: #define _SUCCESS_ O , #define _FAILURE_ 1)
int function(input, &output) {

if (something goes wrong) return _FAILURE_;
return _SUCCESS_;

«O> «Fr « = 4 > P NEd




Error management rules in class

Rule 2:

All functions are called with the macro class_call(.,.,.) (all macros
class_xxx(...) are defined in include/common.h)

class_call(function(input, &output),
error_message_from_function,
error_message_output) ;

This is simply a short-cut for

if (function == _FAILURE_) {
ErrorMsg Transmit_Error_Message;
sprintf (Transmit_Error_Message,"’%s(L:%d) : error in %s;\
n=>%s",__func__,__LINE__ ,#function,

error_message_from_function) ;

sprintf (error_message_output ,"’s",Transmit_Error_Message
);

return _FAILURE_;

15-16.11.2021 J. Lesgourgues CLASS Coding 28/39



Error management rules in class

Rule 3:

Each of the 9 main structures xx has a field called error_message. Any function in
the module xxx.c is called xxx_something() and writes its error message in
xx.error_message (if pxx is a pointer to xx, in pxx->error_message).

So if we are in perturbations_init() and we call perturbations_indices() we
write:

class_call(perturbations_indices(...,ppt),
ppt->error_message,
ppt->error_message) ;

But if we are in perturbations_init() and we call background_at_tau() we write:

class_call(background_at_tau(...,pba),
pba->error_message,
ppt->error_message) ;

15-16.11.2021 J. Lesgourgues CLASS Coding 29/39



Error management rules in class

Rule 4:
Whenever an error could occur, we first write a test with the macro
class_test(.,.,.):

class_test(condition, error_message, "Some text");
or

class_test (condition, error_message, "Some text and numbers
hd he",n,x);

Example:
class_test (num_points == 0,
ppt->error_message,
"this might be caused by ...");
step = (max-min)/((double)num_points) ;

In the text, no need to say in which function we are, or to write that the number of
points is zero, or to put a \n, all this is done automatically.

15-16.11.2021 J. Lesgourgues CLASS Coding 30/39



Error management rules in class

Rule 5:

Always allocate memory with the macros class_alloc(), class_calloc(),
class_realloc().

Instead of

malloc (parray, Nxsizeof (double));

use

class_alloc(parray, N*sizeof (double), pxx->error_message) ;

If allocation fails (N too big, null or negative), the function will automatically return a
_FAILURE_ and the code will return an appropriate error message:

Error running background_init

=>background_init (L:537) :error in background_solve (ppr,pba);

=>background_solve(L:1303) :could not allocate pvecback with
size -8

15-16.11.2021 J. Lesgourgues CLASS Coding 31/39



Error management rules in class

Useful CLASS macros:

class_call(function, errmsg_input, errmsg_output);
class_call_parallel(...);
class_call_except(...,[line of code;line of codej;...;]);

class_test(condition, errmsg_output,"message"[,args]);
class_test_parallel(...);

class_test_except(...,[line of code;line of code;...;]1);
class_stop (errmsg_ouput,"message"[,args]);

class_alloc(pointer ,size);
class_alloc_parallel(...);
class_realloc(...);
class_calloc(...);

You can see them in include/common.h files!

15-16.11.2021 J. Lesgourgues CLASS Coding 32/39



Error management rules in class

Few special cases:

@ in main/class.c there is no “higher level” so the 10 initialisation functions are
called like e.g.:

int main(int argc, char #**argv) {
if (background_init (&pr,&ba) == _FAILURE_) {
printf ("\n\nError running background_init \n=>%s\n"
,ba.error_message);
return _FAILURE_;
}

15-16.11.2021 J. Lesgourgues CLASS Coding 33/39



Error management rules in class

Few special cases:
@ in main/class.c there is no “higher level” so the 10 initialisation functions are
called like e.g.:

int main(int argc, char #**argv) {
if (background_init (&pr,&ba) == _FAILURE_) {
printf ("\n\nError running background_init \n=>Ys\n"
,ba.error_message);
return _FAILURE_;
}

@ the input module does not have an error message attached to its structure, and
just uses the local variable errmsg. So inside this module, the calls read e.g.:

class_call(background_ncdm_init (ppr,pba),
pba->error_message,
errmsg) ;
class_call(parser_read_file(...,errmsg),
errmsg,
errmsg) ;

15-16.11.2021 J. Lesgourgues CLASS Coding 33/39



Error management rules in class

Few special cases:
@ in main/class.c there is no “higher level” so the 10 initialisation functions are
called like e.g.:

int main(int argc, char #**argv) {
if (background_init (&pr,&ba) == _FAILURE_) {
printf ("\n\nError running background_init \n=>Ys\n"
,ba.error_message);
return _FAILURE_;
}

@ the input module does not have an error message attached to its structure, and
just uses the local variable errmsg. So inside this module, the calls read e.g.:

class_call(background_ncdm_init (ppr,pba),
pba->error_message,
errmsg) ;
class_call(parser_read_file(...,errmsg),
errmsg,
errmsg) ;

@ when calling external functions not in the 10 modules we must pass the error
message as an argument:

class_call(array_interpolate(...,pba->error_message),
pba->error_message,
pba->error_message) ;

15-16.11.2021 J. Lesgourgues CLASS Coding 33/39



Implementing new features class

If you want to implement:
@ a new species
@ a new approximation scheme to simplify some equations in some regime

@ a new mathematical description of an existing species (switching on more
precise corrections, etc.)

@ a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Implementing new features class

If you want to implement:
@ a new species
@ a new approximation scheme to simplify some equations in some regime

@ a new mathematical description of an existing species (switching on more
precise corrections, etc.)

@ a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

@ define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Implementing new features class

If you want to implement:
@ a new species
@ a new approximation scheme to simplify some equations in some regime
@ a new mathematical description of an existing species (switching on more
precise corrections, etc.)
@ a new observable or output (new source function, new transfer function, new
spectrum...)
the logic is always the same:

@ define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

@ think of the feature closest to yours, and find its acronym (e.g. for fluid: £1d)

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

think of the feature closest to yours, and find its acronym (e.g. for fluid: £1d)

grep for all occurences of £1d in include/*.h and source/*.c (normally they
are all within some “if (has_f1d){ ...}" and you can search directly for
occurences of has_f1d)

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Implementing new features class

If you want to implement:
@ a new species
@ a new approximation scheme to simplify some equations in some regime

@ a new mathematical description of an existing species (switching on more
precise corrections, etc.)

@ a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

@ define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

@ think of the feature closest to yours, and find its acronym (e.g. for fluid: £1d)

© grep for all occurences of £1d in include/*.h and source/*.c (normally they
are all within some “if (has_f1d){ ...}" and you can search directly for
occurences of has_f1d)

@ duplicate these occurences

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

think of the feature closest to yours, and find its acronym (e.g. for fluid: £1d)

grep for all occurences of £1d in include/*.h and source/*.c (normally they
are all within some “if (has_f1d){ ...}" and you can search directly for
occurences of has_f1d)

duplicate these occurences

change f1d into earde

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

000

define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

think of the feature closest to yours, and find its acronym (e.g. for fluid: £1d)

grep for all occurences of £1d in include/*.h and source/*.c (normally they
are all within some “if (has_f1d){ ...}" and you can search directly for
occurences of has_f1d)

duplicate these occurences
change f1d into earde
change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39



Example of python wrapper:

# redeclaration of relevant CLASS variables in cython
python/cclassy.pxd
# wrapper’s function (.set(),

.compute (), .lensed_cl(), ...)
python/classy.py

Don't edit any other! (generated automatically at compilation, or for testing or
module installation)

«O0>» «Fr «Z» «E>» Q>



Adding parameters in the wrapper

In python/cclassy.pxd relevant variables redeclared inside the structure to which
they belong:

cdef struct background:
double age
cdef struct thermodynamics
double z_reio
Indeed, in the C code, pba->age, pth->z_reio exist...

When defining new parameter in C code that should be accessible from outside:
redeclare them here!

15-16.11.2021 J. Lesgourgues CLASS Coding 36/39



Adding parameters in the wrapper

E.g.: new model of Early Dark Energy.

In include/background.h:

struct background{
double rho_earde;

}
In python/cclassy.pxd:

cdef struct background:

double rho_earde

Recompile after a make clean !

15-16.11.2021 J. Lesgourgues CLASS Coding

37/39



Many are compatible with CLASS! Non-exhaustive list:

@ Bayesian samplers:
@ MontePython (B. Audren, T. Brinckmann, J.L. + others), python,
https://github.com/brinckmann/montepython_public

EE P15-CMB + PSZ Power Spectrum
I P15-CMB + PSZ Cluster Counts
-~ P15-CMB

0.84

. 081F
078 F

S
0.7:

0.1475

E
< 01425

0.68
= 0.66
0.64

= 04
2. 03
302

5

) N
QbQ@Q@Q"\

(1-b)

D DD
%"\Q"\Q“}’Q"g»

og

N
Q_&J’P \s\”’ Q@b@bb@ NN,
Em, [eV]

Bolliet et al. 2019

40> «F>» «=)» « =)

DA



https://github.com/brinckmann/montepython_public

Interface with sampler

Many are compatible with CLASS! Non-exhaustive list:

@ Bayesian samplers:
@ MontePython (B. Audren, T. Brinckmann, J.L. + others), python,

https://github.com/brinckmann/montepython_public
@ cobaya (J. Torrado, A. Lewis), python,

https://cobaya.readthedocs.io
@ cosmosis (J. Zuntz), python,

https://bitbucket.org/joezuntz/cosmosis
@ NumCosmo, (S. Dias Pinto Vitenti, M. Penna-Lima, C. Doux), C with
GObject framework (callable from Perl, Python, etc.),

https://numcosmo.github.io/

@ Frequentist minimizers:
o CAMEL (LAL Orsay), C++, uses MINUIT,

http://camel.in2p3.fr

15-16.11.2021 J. Lesgourgues CLASS Coding 39/39


https://github.com/brinckmann/montepython_public
https://cobaya.readthedocs.io
https://bitbucket.org/joezuntz/cosmosis
https://numcosmo.github.io/
http://camel.in2p3.fr

Interface with sampler

Many are compatible with CLASS! Non-exhaustive list:
@ Bayesian samplers:
@ MontePython (B. Audren, T. Brinckmann, J.L. + others), python,

https://github.com/brinckmann/montepython_public

@ cobaya (J. Torrado, A. Lewis), python,
https://cobaya.readthedocs.io

@ cosmosis (J. Zuntz), python,
https://bitbucket.org/joezuntz/cosmosis

@ NumCosmo, (S. Dias Pinto Vitenti, M. Penna-Lima, C. Doux), C with
GObject framework (callable from Perl, Python, etc.),
https://numcosmo.github.io/

@ Frequentist minimizers:
o CAMEL (LAL Orsay), C++, uses MINUIT,

http://camel.in2p3.fr

At least in MontePython, Cobaya and CAMEL: no declaration of cosmological
parameters in the sampler! No need to modify anything if you add new parameters!
(whatever parameter *name’ read in input file just passed directly through
class.set(’name’:,...)

15-16.11.2021 J. Lesgourgues CLASS Coding 39/39


https://github.com/brinckmann/montepython_public
https://cobaya.readthedocs.io
https://bitbucket.org/joezuntz/cosmosis
https://numcosmo.github.io/
http://camel.in2p3.fr

