
CLASS
the Cosmological Linear Anisotropy Solving System1

Julien Lesgourgues
TTK, RWTH Aachen University

U. di Padova, 15-16.11.2021

1 code developed by Julien Lesgourgues & Thomas Tram plus many others

15-16.11.2021 J. Lesgourgues CLASS Coding 1/39

Coding with class

1 installation, running, documentation

2 python wrapper, using scripts and notebooks

3 dynamical indexing rules

4 input management

5 error management rules

6 adding features

7 adding parameters in the wrapper

8 interface with samplers

15-16.11.2021 J. Lesgourgues CLASS Coding 2/39

Installation

Installation should be straightforward on Linux, and a bit more tricky but still easy on
Mac. We suggest to not even try on other OSs.
We recommend cloning the code from GitHub. The old-fashioned way, i.e.
downloading a .tar.gz, also works.
In the ideal case you would just need to type in your terminal

> git clone http:// github.com/lesgourg/ class_public .git

class

> cd class/

> make clean;make -j

and you would be done. To check whether the C code is correctly installed, you can
type

> ./class explanatory.ini

which should run the code and write some output on the terminal. To check whether
the python wrapper installation also worked, try

> python

>>> from classy import Class

>>>

and just check that python does not complain. If any of these steps does not work,
please look at the detailed installation instructions at
https://github.com/lesgourg/class_public/wiki/Installation

15-16.11.2021 J. Lesgourgues CLASS Coding 3/39

https://github.com/lesgourg/class_public/wiki/Installation

Once the code is installed, where do I find documentation?

1 Basic information and links:

in the historical CLASS webpage http://class-code.net

in the online documentation page (from the previous page, or from

https://github.com/lesgourg/class_public/wiki, clik on the link

online html documentation), in the first two subsections:

CLASS: Cosmic Linear Anisotropy Solving System

Where to find information and documentation on CLASS?

CLASS overview (architecture, input/output, general principles)

2 More advanced:

several detailed courses at different levels on my course webpage

https://lesgourg.github.io/courses.html, especially the New York

CCA course (slides+videos); this lecture will be added there too.

full automatically-generated documentation (including dependence trees)

on the online html documentation, in the last sections: Data

Structures, Files.

15-16.11.2021 J. Lesgourgues CLASS Coding 4/39

http://class-code.net
https://github.com/lesgourg/class_public/wiki
https://lesgourg.github.io/courses.html

class/ directory

In your class directory (e.g. class public-3.0.2/), you should see:

cpp/ # C++ wrapper of CLASS

doc/ # the automatic documentation in PDF

external/# embedded codes: HyRec , BBN interpolation table ,

input for CMB distortions , ...

include/ # header files (*.h) containing declarations

main/ # main CLASS function: short , just calls 10 modules

notebooks/ # examples of useful jupyter notebooks

output/ # directory for output files

python/ # python wrapper of CLASS

scripts/ # same as notebooks in python script format

source/ # the 10 modules of CLASS: ALL THE PHYSICS

test/ # other main functions for testing part of the code

tools/ # auxiliary pieces of code (numerical methods):

ALL THE MATH (no external C library)

explanatory.ini # reference input file

+ plenty of other input files (e.g. with Planck best fit)

+ plenty of precision setting files

CPU.py # small python plotting script

plot_CLASS_output.m # same for MatLab

15-16.11.2021 J. Lesgourgues CLASS Coding 5/39

Running in terminal with input file (old fashioned)

Try for instance:

> ./class default.ini

It gives some output:

Reading input parameters

-> matched budget equations by adjusting Omega_Lambda =

0.690026

Running CLASS version v3.0.1

selected lines from the output:

-> age = 13.797336 Gyr

-> radiation/matter equality at z = 3406.907947

-> recombination at z = 1088.798382

-> reionization at z = 7.681290

-> sigma8 =0.811718 (computed till k = 8.44246 h/Mpc)

(...)

Writing output files in output/default04_ ...

Chatty behavior comes from 10 verbose parameters fixed to 1 in default.ini;
see them with

> tail default.ini

15-16.11.2021 J. Lesgourgues CLASS Coding 6/39

Running in terminal with input file (old fashioned)

Try for instance:

> ./class default.ini

It gives some output:

Reading input parameters

-> matched budget equations by adjusting Omega_Lambda =

0.690026

Running CLASS version v3.0.1

selected lines from the output:

-> age = 13.797336 Gyr

-> radiation/matter equality at z = 3406.907947

-> recombination at z = 1088.798382

-> reionization at z = 7.681290

-> sigma8 =0.811718 (computed till k = 8.44246 h/Mpc)

(...)

Writing output files in output/default04_ ...

Chatty behavior comes from 10 verbose parameters fixed to 1 in default.ini;
see them with

> tail default.ini

15-16.11.2021 J. Lesgourgues CLASS Coding 6/39

Running in terminal with input file (old fashioned)

Run with your own input file with (compulsory) extension *.ini:

>./class my_model.ini

With for instance:

output = tCl ,pCl ,lCl ,mPk

lensing = yes # include CMB lensing effect

non linear = halofit # non -linear P(k) from HALOFIT

root = output/my_model_

write warnings = yes # will alert you if wrong input syntax

Omega_b = 0.05

more comments , ignored because no equal sign in this line

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed are fixed to default, i.e. the most reasonable or
minimalistic choice (ΛCDM with Planck 2013 bestfit)

./class can take two input files *.ini and *.pre:

>./class my_model.ini cl_permille.pre

But one is enough.

15-16.11.2021 J. Lesgourgues CLASS Coding 7/39

Running in terminal with input file (old fashioned)

Run with your own input file with (compulsory) extension *.ini:

>./class my_model.ini

With for instance:

output = tCl ,pCl ,lCl ,mPk

lensing = yes # include CMB lensing effect

non linear = halofit # non -linear P(k) from HALOFIT

root = output/my_model_

write warnings = yes # will alert you if wrong input syntax

Omega_b = 0.05

more comments , ignored because no equal sign in this line

comment with an =, still ignored thanks to the sharp

Order of lines doesn’t matter at all.

All parameters not passed are fixed to default, i.e. the most reasonable or
minimalistic choice (ΛCDM with Planck 2013 bestfit)

./class can take two input files *.ini and *.pre:

>./class my_model.ini cl_permille.pre

But one is enough.

15-16.11.2021 J. Lesgourgues CLASS Coding 7/39

Running in terminal with input file (old fashioned)

Results are in several files output/my_model_*.dat

Can be quickly plotted with provided python script CPU.py (Class Plotting Unit):

> python CPU.py output/my_model_cl_lensed.dat

> python CPU.py output/my_model_cl.dat -y TT --scale loglin

> python CPU.py output/my_model_pk.dat

with options visible with

> python CPU.py --help

101 102 103

0

1

2

3

4

5

6

7

1e 10
my_model_cl: TT

10 5 10 4 10 3 10 2 10 1 100 101

k (h/Mpc)

100

101

102

103

104

my_model_pk: P(Mpc/h)^3

Also provide similar MATLAB script plot_CLASS_output.m, get syntax with

help plot_class_output

15-16.11.2021 J. Lesgourgues CLASS Coding 8/39

Running in terminal with input file (old fashioned)

Results are in several files output/my_model_*.dat

Can be quickly plotted with provided python script CPU.py (Class Plotting Unit):

> python CPU.py output/my_model_cl_lensed.dat

> python CPU.py output/my_model_cl.dat -y TT --scale loglin

> python CPU.py output/my_model_pk.dat

with options visible with

> python CPU.py --help

101 102 103

0

1

2

3

4

5

6

7

1e 10
my_model_cl: TT

10 5 10 4 10 3 10 2 10 1 100 101

k (h/Mpc)

100

101

102

103

104

my_model_pk: P(Mpc/h)^3

Also provide similar MATLAB script plot_CLASS_output.m, get syntax with

help plot_class_output

15-16.11.2021 J. Lesgourgues CLASS Coding 8/39

Species in public class

photons: T_cmb or Omega_g or omega_g

baryons: Omega_b or omega_b

ultra-relativistic species (massless neutrinos): N_ur or Omega_ur or omega_ur

cold dark matter: Omega_cdm or omega_cdm (possibly annihilating:
annihilation, etc.)

N_ncdm distinct non-cold dark matter species (massive neutrinos, warm dark
matter...): m_ncdm or Omega_ncdm or omega_ncdm plus lots of options

cold dark matter decaying into dark radiation: Omega_dcdmdr or omega_dcdmdr
plus Gamma_dcdm

cold dark matter interacting with dark radiation: Omega_idm_dr or
omega_idm_dr plus cross-section, ...)

coming soon: dark matter interacting with photons and/or baryons and/or dark
radiation

dark radiation interacting with dark matter and/or with itself: N_idr, plus
cross-sections, ...

spatial curvature Omega_k

cosmological constant Omega_Lambda

fluid Omega_fld plus w0_fld, wa_fld, cs2_fld, etc.

scalar field (quintessence) Omega_scf plus specifications

All details are in explanatory.ini

(densities can all be set to zero, excepted photons and baryons)

15-16.11.2021 J. Lesgourgues CLASS Coding 9/39

Species in public class

Budget equation: ∑
X

ΩX = 1 + Ωk

To avoid over-constraining the input, one of the last three (Omega_Lambda, Omega_fld,
Omega_scf) must be left unspecified and class will assign it using budget equation.

default: Omega_Lambda is automatically adjusted, assuming Omega_fld =
Omega_scf = 0.

if you pass Omega_Lambda = 0: Omega_fld is automatically adjusted, assuming
Omega_scf = 0.

if you pass Omega_Lambda = 0 and Omega_fld = 0: Omega_scf is automatically
adjusted.

Allows whatever combination.
E.g. to replace Λ by a dynamical DE fluid with (w0, wa) = (−0.9, 0.1):
Omega_Lambda=0.

w0_fld=0.9

wa_fld=0.1

15-16.11.2021 J. Lesgourgues CLASS Coding 10/39

Running class from python

class as a Python module

based on wrapper located in python/classy.pyx (developed initially by
B. Audren and extended by many others)

the compilation produces a python module classy.py and installs it on
your computer (can be called from anywhere)

wrapper written in Cython, encapsulates most useful class
variables/functions, contains extra functions (e.g.
MontePython-motivated)

goal: obtain, manipulate and plot the results directly within (i)python
scripts or notebooks (recommended)

we will now discuss several examples of scrips/notebooks which are available in
scripts/ and notebooks/ (should work with python 2.7 or 3)

with jupyter installed, open the notebooks with e.g.

> jupyter notebook notebooks/warmup.ipnyb

if you can’t make it with jupyter, you’ll get the same results with

> python scripts/warmup.py

15-16.11.2021 J. Lesgourgues CLASS Coding 11/39

Python wrapper

First basic example (notebooks/warmup.ipynb or scripts/warmup.py)

import classy module

from classy import Class

create instance of the class "Class"

LambdaCDM = Class()

pass input parameters

LambdaCDM.set({’omega_b ’:0.0223828 , ’omega_cdm ’:0.1201075 , ’h’:0.67810 ,’A_s’

:2.100549e-09,’n_s’:0.9660499 , ’tau_reio ’:0.05430842})

LambdaCDM.set({’output ’:’tCl ,pCl ,lCl ,mPk’,’lensing ’:’yes’,’P_k_max_1/Mpc’:3.0})

run class

LambdaCDM.compute ()

get all C_l output

cls = LambdaCDM.lensed_cl (2500)

To check the format of cls

cls.keys()

dict_keys([’pp’, ’ell’, ’bb’, ’ee’, ’tt’, ’tp’, ’te’])

ll = cls[’ell’][2:]

clTT = cls[’tt’][2:]

clEE = cls[’ee’][2:]

clPP = cls[’pp’][2:]

15-16.11.2021 J. Lesgourgues CLASS Coding 12/39

Python wrapper

First basic example (notebooks/warmup.ipynb or scripts/warmup.py)

import matplotlib.pyplot as plt

from math import pi

plot C_l^TT

plt.figure (1)

plt.xscale(’log’);plt.yscale(’linear ’);plt.xlim (2 ,2500)

plt.xlabel(r’ℓ’)
plt.ylabel(r’$[\ell(\ell+1) /2\pi] C_\ell^\ mathrm{TT}$’)
plt.plot(ll ,clTT*ll*(ll+1) /2./pi,’r-’)

101 102 103

0

1

2

3

4

5

6

7

[(
+

1)
/2

]C
TT

1e 10

plt.savefig(’warmup_cltt.pdf’)

15-16.11.2021 J. Lesgourgues CLASS Coding 13/39

Python wrapper
First basic example (notebooks/warmup.ipynb or scripts/warmup.py)

get P(k) at redhsift z=0

import numpy as np

kk = np.logspace(-4,np.log10 (3) ,1000) # k in h/Mpc

Pk = [] # P(k) in (Mpc/h)**3

h = LambdaCDM.h() # get reduced Hubble for conversions to 1/ Mpc

for k in kk:

Pk.append(LambdaCDM.pk(k*h,0.)*h**3) # function .pk(k,z)

plot P(k)

plt.figure (2)

plt.xscale(’log’);plt.yscale(’log’);plt.xlim(kk[0],kk[-1])

plt.xlabel(r’$k \,\,\,\, [h/\ mathrm{Mpc}]$’)
plt.ylabel(r’$P(k) \,\,\,\, [\ mathrm{Mpc}/h]^3$’)
plt.plot(kk ,Pk,’b-’)

10 4 10 3 10 2 10 1 100

k [h/Mpc]

101

102

103

104

P(
k)

[M
pc

/h
]3

plt.savefig(’warmup_pk.pdf’)

15-16.11.2021 J. Lesgourgues CLASS Coding 14/39

Python wrapper: IPython notebooks

The TAB key after the dot gives you the list of available classy methods (= available
functions and quantities) in a scrolling menu:

15-16.11.2021 J. Lesgourgues CLASS Coding 15/39

Python wrapper: IPython notebooks

The TAB+SHIFT keys after the () gives you a short doc on each method (expand it
by clicking +):

15-16.11.2021 J. Lesgourgues CLASS Coding 16/39

Library of scripts and notebooks downloaded together with public code, meant to let
you understand specific aspects:

warmup → basic plotting of most common observables

cl_ST → tensor contribution to CMB

cltt_terms → decomposition of temperature Cl in SW, Doppler, ISW, ...

distances → plotting background quantitites

thermo → plotting thermodynamical quantitites

one_k → transfer functions for given k versus time

one_time → transfer functions for given time versus k

many_times → colored surface for transfer function versus time and k

varying_pann → showing impact of variation of one parameter

varying_Neff → similar (more advanced)

neutrinohierarchy → playing with multiple neutrino masses

check_PPF_approx →(technical) check consistency of Parametrized
Post-Friedmann description of fluid DE crossing phantom divide

Growth_with_w →(technical) compute growth factor with fluid DE

15-16.11.2021 J. Lesgourgues CLASS Coding 17/39

Dynamical indexing rules in class

Indexing is very generic in CLASS, same rules apply everywhere.

Example: we want to define the indices of a vector of background quantities
(stored in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39

Dynamical indexing rules in class

Indexing is very generic in CLASS, same rules apply everywhere.

Example: we want to define the indices of a vector of background quantities
(stored in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39

Dynamical indexing rules in class

Indexing is very generic in CLASS, same rules apply everywhere.

Example: we want to define the indices of a vector of background quantities
(stored in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39

Dynamical indexing rules in class

Indexing is very generic in CLASS, same rules apply everywhere.

Example: we want to define the indices of a vector of background quantities
(stored in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39

Dynamical indexing rules in class

Indexing is very generic in CLASS, same rules apply everywhere.

Example: we want to define the indices of a vector of background quantities
(stored in the background table).

We choose an abreviation of 2 letters for these indices, _bg_.

Then we declare all possible indices index_bg_<blabla> in
include/background.h (more precisely, inside the structure background,
because these indices are necessary for manipulating the background table).

We also declare flags saying whether these indices need to be defined or not.

15-16.11.2021 J. Lesgourgues CLASS Coding 18/39

Dynamical indexing rules in class

In include/background.h:

struct background {

/** input parameters with assigned in the input module*

*/

double Omega0_cdm;

...

/** flags and indices **/

int has_cdm; // can take values _TRUE_ or _FALSE_

....

int index_bg_rho_cdm;

...

int bg_size;

/** interpolation table **/

double * background_table;

}

15-16.11.2021 J. Lesgourgues CLASS Coding 19/39

Dynamical indexing rules in class

In source/background.c, the function background_indices() called at the
beginning of background_init() assigns numerical value to indices, that the user will
never need to know (quantities always written symbolically as
y[pba->index_bg_rho_cdm])

int background_indices(pba ,...) {

/* initialize all flags */

if (pba ->Omega0_cdm != 0.)

pba ->has_cdm = _TRUE_;

...

/* initialize all indices */

index_bg =0;

class_define_index(pba ->index_bg_rho_cdm ,

pba ->has_cdm ,

index_bg ,

1);

class_define_index(pba ->index_bg_rho_fld ,

pba ->has_fld ,

index_bg ,

1);

...

pba ->bg_size = index_bg;

}

15-16.11.2021 J. Lesgourgues CLASS Coding 20/39

Dynamical indexing rules in class

This logic is followed everywhere for all groups of indices! Examples:

in background.c: index bg ... for all background variables {A,B,C}
in background.c: index bi ... for backg. var. {B,C} integrated over time

in thermodynamics.c: index th ... for all thermodynamics variables

in perturbations.c: index pt ... perturbation var. integrated over time

in perturbations.c: index mt ... metric perturbations

in perturbations.c: index md ... list of modes (scalar, vector, tensor)

in perturbations.c: index ic ... list of initial conditions (AD, CDI, NID...)

in perturbations.c: index tp ... list of type of required source
(temperature, polarisation, matter fluctuation...)

in perturbations.c: index ap ... list of approximations that may be used

etc. etc.

Check in your include/*.h files!

15-16.11.2021 J. Lesgourgues CLASS Coding 21/39

Input management in class

Terminal Python wrapper

file xxx.ini

↓
input_init_from_argument(...)

(parser)
↓

.set(...)

↓
struct file_content fc; (all parameter names/values stored as arrays of strings)

↓
input_init(...)

↓
input_read_parameters(...)

(assign all default values + interprete input + update some parameters)
↓

relevant parameters only get stored in the structures of each module

For special parameters requiring a shooting method: repeated calls of
input_read_parameters(...) from input_init(...) until shooting target is met.

15-16.11.2021 J. Lesgourgues CLASS Coding 22/39

Input management in class

For normal parameters (no shooting): example of CDM density:

/** - Omega_0_cdm (CDM) */

class_call(parser_read_double(pfc ,"Omega_cdm",¶m1 ,&

flag1 ,errmsg),

errmsg ,

errmsg);

class_call(parser_read_double(pfc ,"omega_cdm",¶m2 ,&

flag2 ,errmsg),

errmsg ,

errmsg);

class_test (((flag1 == _TRUE_) && (flag2 == _TRUE_)),

errmsg ,

"In input file , you can only enter one of

Omega_cdm or omega_cdm , choose one");

if (flag1 == _TRUE_)

pba ->Omega0_cdm = param1;

if (flag2 == _TRUE_)

pba ->Omega0_cdm = param2/pba ->h/pba ->h;

15-16.11.2021 J. Lesgourgues CLASS Coding 23/39

Input management in class

For shooting parameters, establish mapping between target parameter, unknown
parameter and level. Currently:

target parameter unknown parameter level
100× θs h thermodynamics
σ8 As fourier

Ωdcdm ρinidcdm background
...

... plus a few others (alternative parametrizations of decaying CDM, quintessence
parameters).

If you need to add such parameters: see how it is done e.g. for 100*theta_s and
replicate the structure!

15-16.11.2021 J. Lesgourgues CLASS Coding 24/39

Error management rules in class

Run with an input file containing only

omega_b = 0.07

15-16.11.2021 J. Lesgourgues CLASS Coding 25/39

Error management rules in class

By following a few general rules, we get automatically some very informative error
messages like:

Error in thermodynamics_init

=>thermodynamics_init(L:292) :error in

thermodynamics_helium_from_bbn(ppr ,pba ,pth);

=>thermodynamics_helium_from_bbn(L:1031) :condition (omega_b

> omegab[num_omegab -1]) is true; You have asked for an

unrealistic high value omega_b = 7.e-02. The

corrresponding value of the primordial helium fraction

cannot be found in the interpolation table. If you

really want this value , you should fix YHe to a given

value rather than to BBN

We only wrote the piece starting with “You have asked...”. All the rest was
generated automatically by the code. This follows from following everywhere 5 rules.

15-16.11.2021 J. Lesgourgues CLASS Coding 26/39

Error management rules in class

Rule 1:

All functions are of type int, and return either _SUCCESS_ or _FAILURE_ (defined
internally in include/common.h: #define _SUCCESS_ 0 , #define _FAILURE_ 1)

int function(input , &output) {

...

if (something goes wrong) return _FAILURE_;

...

return _SUCCESS_;

}

15-16.11.2021 J. Lesgourgues CLASS Coding 27/39

Error management rules in class

Rule 2:

All functions are called with the macro class_call(.,.,.) (all macros
class_xxx(...) are defined in include/common.h):

class_call(function(input , &output),

error_message_from_function ,

error_message_output);

This is simply a short-cut for

if (function == _FAILURE_) {

ErrorMsg Transmit_Error_Message;

sprintf(Transmit_Error_Message ,"%s(L:%d) : error in %s;\

n=>%s",__func__ ,__LINE__ ,#function ,

error_message_from_function);

sprintf(error_message_output ,"%s",Transmit_Error_Message

);

return _FAILURE_;

}

15-16.11.2021 J. Lesgourgues CLASS Coding 28/39

Error management rules in class

Rule 3:

Each of the 9 main structures xx has a field called error_message. Any function in
the module xxx.c is called xxx_something() and writes its error message in
xx.error_message (if pxx is a pointer to xx, in pxx->error_message).

So if we are in perturbations_init() and we call perturbations_indices() we
write:

class_call(perturbations_indices (...,ppt),

ppt ->error_message ,

ppt ->error_message);

But if we are in perturbations_init() and we call background_at_tau() we write:

class_call(background_at_tau (...,pba),

pba ->error_message ,

ppt ->error_message);

15-16.11.2021 J. Lesgourgues CLASS Coding 29/39

Error management rules in class

Rule 4:

Whenever an error could occur, we first write a test with the macro
class_test(.,.,.):

class_test(condition , error_message , "Some text");

or

class_test(condition , error_message , "Some text and numbers

%d %e",n,x);

Example:

class_test(num_points == 0,

ppt ->error_message ,

"this might be caused by ...");

step = (max -min)/((double)num_points);

In the text, no need to say in which function we are, or to write that the number of
points is zero, or to put a \n, all this is done automatically.

15-16.11.2021 J. Lesgourgues CLASS Coding 30/39

Error management rules in class

Rule 5:

Always allocate memory with the macros class_alloc(), class_calloc(),
class_realloc().

Instead of

malloc(parray , N*sizeof(double));

use

class_alloc(parray , N*sizeof(double), pxx ->error_message);

If allocation fails (N too big, null or negative), the function will automatically return a
FAILURE and the code will return an appropriate error message:

Error running background_init

=>background_init(L:537):error in background_solve(ppr ,pba);

=>background_solve(L:1303):could not allocate pvecback with

size -8

15-16.11.2021 J. Lesgourgues CLASS Coding 31/39

Error management rules in class

Useful class macros:

class_call(function , errmsg_input , errmsg_output);

class_call_parallel (...);

class_call_except (...,[line of code;line of code ;...;]);

class_test(condition , errmsg_output ,"message"[,args]);

class_test_parallel (...);

class_test_except (...,[line of code;line of code ;...;]);

class_stop(errmsg_ouput ,"message"[,args]);

class_alloc(pointer ,size);

class_alloc_parallel (...);

class_realloc (...);

class_calloc (...);

You can see them in include/common.h files!

15-16.11.2021 J. Lesgourgues CLASS Coding 32/39

Error management rules in class
Few special cases:

in main/class.c there is no “higher level” so the 10 initialisation functions are
called like e.g.:

int main(int argc , char **argv) {

if (background_init (&pr ,&ba) == _FAILURE_) {

printf("\n\nError running background_init \n=>%s\n"

,ba.error_message);

return _FAILURE_;

}

the input module does not have an error message attached to its structure, and
just uses the local variable errmsg. So inside this module, the calls read e.g.:

class_call(background_ncdm_init(ppr ,pba),

pba ->error_message ,

errmsg);

class_call(parser_read_file (..., errmsg),

errmsg ,

errmsg);

when calling external functions not in the 10 modules we must pass the error
message as an argument:

class_call(array_interpolate (...,pba ->error_message),

pba ->error_message ,

pba ->error_message);

15-16.11.2021 J. Lesgourgues CLASS Coding 33/39

Error management rules in class
Few special cases:

in main/class.c there is no “higher level” so the 10 initialisation functions are
called like e.g.:

int main(int argc , char **argv) {

if (background_init (&pr ,&ba) == _FAILURE_) {

printf("\n\nError running background_init \n=>%s\n"

,ba.error_message);

return _FAILURE_;

}

the input module does not have an error message attached to its structure, and
just uses the local variable errmsg. So inside this module, the calls read e.g.:

class_call(background_ncdm_init(ppr ,pba),

pba ->error_message ,

errmsg);

class_call(parser_read_file (..., errmsg),

errmsg ,

errmsg);

when calling external functions not in the 10 modules we must pass the error
message as an argument:

class_call(array_interpolate (...,pba ->error_message),

pba ->error_message ,

pba ->error_message);

15-16.11.2021 J. Lesgourgues CLASS Coding 33/39

Error management rules in class
Few special cases:

in main/class.c there is no “higher level” so the 10 initialisation functions are
called like e.g.:

int main(int argc , char **argv) {

if (background_init (&pr ,&ba) == _FAILURE_) {

printf("\n\nError running background_init \n=>%s\n"

,ba.error_message);

return _FAILURE_;

}

the input module does not have an error message attached to its structure, and
just uses the local variable errmsg. So inside this module, the calls read e.g.:

class_call(background_ncdm_init(ppr ,pba),

pba ->error_message ,

errmsg);

class_call(parser_read_file (..., errmsg),

errmsg ,

errmsg);

when calling external functions not in the 10 modules we must pass the error
message as an argument:

class_call(array_interpolate (...,pba ->error_message),

pba ->error_message ,

pba ->error_message);

15-16.11.2021 J. Lesgourgues CLASS Coding 33/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Implementing new features class

If you want to implement:

a new species

a new approximation scheme to simplify some equations in some regime

a new mathematical description of an existing species (switching on more
precise corrections, etc.)

a new observable or output (new source function, new transfer function, new
spectrum...)

the logic is always the same:

1 define an acronym easy to search in the C files (e.g. for early dark energy:
earde is good, ede is bad because it is inside “redefine”, “needed”, etc.)

2 think of the feature closest to yours, and find its acronym (e.g. for fluid: fld)

3 grep for all occurences of fld in include/*.h and source/*.c (normally they
are all within some “if (has_fld){ ...}” and you can search directly for
occurences of has_fld)

4 duplicate these occurences

5 change fld into earde

6 change some equations to describe the specific properties of your feature

15-16.11.2021 J. Lesgourgues CLASS Coding 34/39

Adding parameters in the wrapper

Example of python wrapper:

redeclaration of relevant CLASS variables in cython

python/cclassy.pxd

wrapper ’s function (.set(), .compute (), .lensed_cl (), ...)

python/classy.py

Don’t edit any other! (generated automatically at compilation, or for testing or
module installation)

15-16.11.2021 J. Lesgourgues CLASS Coding 35/39

Adding parameters in the wrapper

In python/cclassy.pxd relevant variables redeclared inside the structure to which
they belong:

cdef struct background:

...

double age

...

cdef struct thermodynamics

...

double z_reio

...

Indeed, in the C code, pba->age, pth->z_reio exist...
When defining new parameter in C code that should be accessible from outside:
redeclare them here!

15-16.11.2021 J. Lesgourgues CLASS Coding 36/39

Adding parameters in the wrapper

E.g.: new model of Early Dark Energy.

In include/background.h:

struct background{

...

double rho_earde;

...

}

In python/cclassy.pxd:

cdef struct background:

...

double rho_earde

...

Recompile after a make clean !

15-16.11.2021 J. Lesgourgues CLASS Coding 37/39

Interface with sampler

Many are compatible with CLASS! Non-exhaustive list:

Bayesian samplers:

MontePython (B. Audren, T. Brinckmann, J.L. + others), python,

https://github.com/brinckmann/montepython_public

0.
1

0.
2

0.
3

0.
4

Σmν [eV]

0.75

0.78

0.81

0.84

σ
8

0.1425

0.1475

Ω
m
h

2

0.64

0.66

0.68

h

0.
55

0.
60

0.
65

0.
70

(1− b)

0.1

0.2

0.3

0.4

Σ
m
ν

[e
V

]

0.
75

0.
78

0.
81

0.
84

σ8
0.
14

25

0.
14

75

Ωmh
2

0.
64

0.
66

0.
68

h

P15–CMB + PSZ Power Spectrum

P15–CMB + PSZ Cluster Counts

P15–CMB

Bolliet et al. 2019

15-16.11.2021 J. Lesgourgues CLASS Coding 38/39

https://github.com/brinckmann/montepython_public

Interface with sampler
Many are compatible with CLASS! Non-exhaustive list:

Bayesian samplers:
MontePython (B. Audren, T. Brinckmann, J.L. + others), python,

https://github.com/brinckmann/montepython_public

cobaya (J. Torrado, A. Lewis), python,

https://cobaya.readthedocs.io

cosmosis (J. Zuntz), python,

https://bitbucket.org/joezuntz/cosmosis

NumCosmo, (S. Dias Pinto Vitenti, M. Penna-Lima, C. Doux), C with
GObject framework (callable from Perl, Python, etc.),

https://numcosmo.github.io/

Frequentist minimizers:
CAMEL (LAL Orsay), C++, uses MINUIT,

http://camel.in2p3.fr

At least in MontePython, Cobaya and CAMEL: no declaration of cosmological
parameters in the sampler! No need to modify anything if you add new parameters!
(whatever parameter ’name’ read in input file just passed directly through
class.set(’name’:,...)

15-16.11.2021 J. Lesgourgues CLASS Coding 39/39

https://github.com/brinckmann/montepython_public
https://cobaya.readthedocs.io
https://bitbucket.org/joezuntz/cosmosis
https://numcosmo.github.io/
http://camel.in2p3.fr

Interface with sampler
Many are compatible with CLASS! Non-exhaustive list:

Bayesian samplers:
MontePython (B. Audren, T. Brinckmann, J.L. + others), python,

https://github.com/brinckmann/montepython_public

cobaya (J. Torrado, A. Lewis), python,

https://cobaya.readthedocs.io

cosmosis (J. Zuntz), python,

https://bitbucket.org/joezuntz/cosmosis

NumCosmo, (S. Dias Pinto Vitenti, M. Penna-Lima, C. Doux), C with
GObject framework (callable from Perl, Python, etc.),

https://numcosmo.github.io/

Frequentist minimizers:
CAMEL (LAL Orsay), C++, uses MINUIT,

http://camel.in2p3.fr

At least in MontePython, Cobaya and CAMEL: no declaration of cosmological
parameters in the sampler! No need to modify anything if you add new parameters!
(whatever parameter ’name’ read in input file just passed directly through
class.set(’name’:,...)

15-16.11.2021 J. Lesgourgues CLASS Coding 39/39

https://github.com/brinckmann/montepython_public
https://cobaya.readthedocs.io
https://bitbucket.org/joezuntz/cosmosis
https://numcosmo.github.io/
http://camel.in2p3.fr

