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Chapter 1

Introduction to the
universe expansion

1.1 Historical overview

1.1.1 The Doppler effect

At the beginning of the XX-th century, the understanding of the global struc-
ture of the universe beyond the scale of the solar system was still relying on
pure speculation. In 1750, with a remarkable intuition, Thomas Wright under-
stood that the luminous stripe observed in the night sky and called the Milky
Way could be a consequence of stars being distributed along a thin plate. At
that time, with the help of telescopes, many faint and diffuse objects had been
already observed and listed, under the generic name of nebulae - in addition
to the Andromeda nebula which is visible by eye, and has been known many
centuries before the invention of telescopes. Soon after the proposal of Wright,
the philosopher Emmanuel Kant suggested that some of these nebulae could be
some other clusters of stars, far outside the Milky Way. So, the idea of a galactic
structure appeared in the mind of astronomers during the XVIII-th century, but
even in the following century there was no way to check it on an experimental
basis.

At the beginning of the nineteenth century, some physicists observed the
first spectral lines. In 1842, Johann Christian Doppler argued that if an ob-
server receives a wave emitted by a body in motion, the wavelength that he will
measure will be shifted proportionally to the speed of the emitting body with
respect to the observer (projected along the line of sight):

∆λ/λ = ~v · ~n/c (1.1)

where c is the celerity of the wave (See figure 1.1). He suggested that this effect
could be observable for both light and sound waves. The former assumption
was checked experimentally in 1868 by Sir William Huggins, who found that
the spectral lines of some neighboring stars were slightly shifted toward the red
or blue ends of the spectrum. So, it was possible to know the projection of star
velocities along the line of sight, vr, using

z ≡ ∆λ/λ = vr/c (1.2)

where z is called the redshift (it is negative in case of blue-shift) and c is the
speed of light. Note that the redshift gives no indication concerning the distance
of the star. At the beginning of the XX-th century, with increasingly good
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8 CHAPTER 1. INTRODUCTION TO THE UNIVERSE EXPANSION
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Figure 1.1: The Doppler effect.

instruments, people could also measure the redshift of some nebulae. The first
measurements, performed on the brightest objects, indicated some arbitrary
distribution of red and blue-shifts, like for stars. Then, with more observations,
it appeared that the statistics was biased in favor of red-shifts, suggesting that
a majority of nebulae were going away from us, unlike stars. This was raising
new questions concerning the distance and the nature of nebulae.

1.1.2 The discovery of the galactic structure

In the 1920’s, Leavitt and Shapley studied some particular stars, called the
cepheids, known to have a periodic time-varying luminosity. They could show
that the period of cepheids is proportional to their absolute luminosity L (the
absolute luminosity is the total amount of light emitted by unit of time, i.e.,
the flux integrated on a closed surface around the star). This relation is well
understood from current knowledge on stellar physics (it is due to the cycle of
ionization of helium in the cepheids’s athmosphere). Leavitt and Shapley were
already able to measure the coefficient of proportionality (calibrated with the
nearest cepheids, for which the parallax method can be employed; the parallax
is half the angle under which a star appears to move when the earth makes one
rotation around the sun). So, by measuring the apparent luminosity, i.e. the
flux l per unit of surface through an instrument pointing to the star, it was easy
to get the distance of the star r from

L = l ×
(
4πr2

)
. (1.3)

Using this technique, it became possible to measure the distance of various
cepheids inside our galaxies, and to obtain the first estimate of the characteristic
size of the stellar disk of the Milky Way (known today to be around 80.000 light-
years).

But what about nebulae? In 1923, the 2.50m telescope of Mount Wilson (Los
Angeles) allowed Edwin Hubble to make the first observation of individual stars
inside the brightest nebula, Andromeda. Some of these were found to behave like
cepheids, leading Hubble to give an estimate of the distance of Andromeda. He
found approximately 900.000 light-years (but later, when cepheids were known
better, this distance was established to be around 2 million light-years). That
was the first confirmation of the galactic structure of the universe: some nebulae
were likely to be some distant replicas of the Milky Way, and the galaxies were
separated by large voids.

1.1.3 The Cosmological Principle

This observation, together with the fact that most nebulae are redshifted (ex-
cepted for some of the nearest ones like Andromeda), was an indication that
on the largest observable scales, the universe was expanding. At the beginning,
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Figure 1.2: Homogeneous expansion on a two-dimensional grid. Some equally-
spaced observers are located at each intersection. The grid is plotted twice. On
the left, the arrays show the expansion flow measured by A; on the right, the
expansion flow measured by B. If we assume that the expansion is homogeneous,
we get that A sees B going away at the same velocity as B sees C going away.
So, using the additivity of speeds, the velocity of C with respect to A must
be twice the velocity of B with respect to A. This shows that there is a linear
relation between speed and distance, valid for any observer.

this idea was not widely accepted. Indeed, in the most general case, a given
dynamics of expansion takes place around a center. Seeing the universe in ex-
pansion around us seemed to be an evidence for the existence of a center in the
universe, very close to our own galaxy.

Until the middle age, the Cosmos was thought to be organised around
mankind, but the common wisdom of modern science suggests that there should
be nothing special about the region or the galaxy in which we live. This intuitive
idea was formulated by the astrophysicist Edward Arthur Milne as the “Cos-
mological Principle”: the universe as a whole should be homogeneous, with no
privileged point playing a particular role.

Was the apparently observed expansion of the universe a proof against the
Cosmological Principle? Not necessarily. The homogeneity of the universe is
compatible either with a static distribution of galaxies, or with a very special
velocity field, obeying to a linear distribution:

~v = H ~r (1.4)

where ~v denotes the velocity of an arbitrary body with position ~r, and H is a
constant of proportionality. An expansion described by this law is still homo-
geneous because it is left unchanged by a change of origin. To see this, one can
make an analogy with an infinitely large rubber grid, that would be stretched
equally in all directions: it would expand, but with no center (see figure 1.2).
This result is not true for any other velocity field. For instance, the expansion
law

~v = H |~r| ~r (1.5)

is not invariant under a change of origin: so, it has a center.

1.2 The Hubble Law

1.2.1 Hubble’s discovery

So, a condition for the universe to respect the Cosmological Principle is that the
speed of galaxies along the line of sight, or equivalently, their redshift, should
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Figure 1.3: The diagram published by Hubble in 1929. The labels of the hori-
zontal (resp. vertical) axis are 0, 1, 2 Mpc (resp. 0, 500, 1000 km.s−1). Hubble
estimated the expansion rate to be 500 km.s−1Mpc−1. Today, it is known to be
around 70 km.s−1Mpc−1.

be proportional to their distance. Hubble tried to check this idea, still using the
cepheid technique. He published in 1929 a study based on 18 galaxies (in which
cepheids could be seen), for which he had measured both the redshift and the
distance. His results were showing roughly a linear relation between redshift and
distance (see figure 1.3). He concluded that the universe was in homogeneous
expansion, and gave the first estimate of the coefficient of proportionality H,
called the Hubble parameter.

Hubble’s measurements were rather unprecise. It is now understood that
his measurement were not based on regular cepheids. Moreover, at distances
of the order of 1 Mpc probed by Hubble’s experiment (Mpc denotes a Mega-
parsec, the unity of distance usually employed for cosmology; 1 Mpc ' 3 ×
1022m ' 3 × 106 light-years; the proper definition of a parsec is “the distance
to an object with a parallax of one arcsecond”), peculiar velocities tend to
dominate over the expansion flow. So, Hubble’s conclusion was obviously quite
biased. However, this experiment is generally considered as the starting point
of experimental cosmology. Since then, many similar experiments have been
performed with better and better techniques and instruments, using not only
cepheids but also supernovae and other “standard candles” (i.e., objects which
absolute magnitude can be inferred in some way, without knowing their distance)
at larger and lager distances. Recent data (like that shown in figure 1.4) leave
no doubt about the proportionality, but there is still an uncertainty concerning
the exact value of H. The Hubble constant is generally parametrized as

H = 100 h km s−1Mpc−1 (1.6)

where h is the dimensionless “reduced Hubble parameter”, currently known to
be in the range h = 0.706±0.033 (at the 68% confidence level) from astrophysical
observations (MNRAS 440 (2014) 1138). As we shall see later most cosmological
observations confirm this range. So, for instance, a typical galaxy located at 10
Mpc goes away at a speed close to 700 km s−1.

1.2.2 Homogeneity and inhomogeneities

Before leaving this section, we should clarify one point about the “Cosmological
Principle”, i.e. the assumption that the universe is homogeneous. Of course,
nobody has ever claimed that the universe was homogeneous on small scales,
since compact objects like planets or stars, or clusters of stars like galaxies
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Figure 1.4: An example of Hubble diagram published by the Hubble Space Tele-
scope Key Project in 2000 (Astrophys.J. 553 (2001) 47-72), based on cepheids,
supernovae and other standard candles till a distance of 400 Mpc. The hori-
zontal axis gives the radial velocity, expressed as log10[v/c] = log10 z where z is
redshift; the vertical axis shows the distance log10[d/(1Mpc)].

are inhomogeneities in themselves. The Cosmological Principle only assumes
homogeneity after smoothing over some characteristic scale. By analogy, take
a grid of step l (see figure 1.5), and put one object in each intersection, with a
randomly distributed mass (with all masses obeying to the same distribution of
probability). Then, make a random displacement of each object (again with all
displacements obeying to the same distribution of probability). At small scales,
the mass density is obviously inhomogeneous for three reasons: the objects
are compact, they have different masses, and they are separated by different
distances. However, since the distribution has been obtained by performing a
random shift in mass and position, starting from an homogeneous structure, it
is clear even intuitively that the mass density smoothed over some large scale
will remain homogeneous again.

The Cosmological Principle should be understood in this sense. Let us sup-
pose that the universe is almost homogeneous at a scale corresponding, say, to
the typical intergalactic distance, multiplied by thirty or so. Then, the Hub-
ble law doesn’t have to be verified exactly for an individual galaxy, because
of peculiar motions resulting from the fact that galaxies have slightly different
masses, and are not in a perfectly ordered phase like a grid. But the Hubble
law should be verified in average, provided that the maximum scale of the data
is not smaller than the scale of homogeneity. The scattering of the data at a
given scale reflects the level of inhomogeneity, and when using data on larger
and larger scales, the scattering must be less and less significant. This is exactly
what is observed in practice. An even better proof of the homogeneity of the
universe on large scales comes from the Cosmic Microwave Background, as we
shall see in section 6.6.

We will come back to these issues in section 6.6, and show how the forma-
tion of inhomogeneities on small scales are currently understood and quantified
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smoothing
radius

Figure 1.5: We build an inhomogeneous distribution of objects in the following
way: starting from each intersection of the grid, we draw a random vector and
put an object of random mass at the extremity of the vector. Provided that
all random vectors and masses obey to the same distributions of probability,
the mass density is still homogeneous when it is smoothed over a large enough
smoothing radius (in our example, the typical length of the vectors is smaller
than the step of the grid; but our conclusion would still apply if the vectors were
larger than the grid step, provided that the smoothing radius is even larger).
This illustrates the concept of homogeneity above a given scale, like in the
universe.

within some precise physical models.

1.3 The universe Expansion from Newtonian Grav-
ity

It is not enough to observe the galactic motions, one should also try to explain
it with the laws of physics.

1.3.1 Newtonian Gravity versus General Relativity

On cosmic scales, the only force expected to be relevant is gravity. The first
theory of gravitation, derived by Newton, was embedded later by Einstein into
a more general theory: General Relativity (thereafter denoted GR). However,
in simple words, GR is relevant only for describing gravitational forces between
bodies which have relative motions comparable to the speed of light1. In most
other cases, Newton’s gravity gives a sufficiently accurate description.

The speed of neighboring galaxies is always much smaller than the speed of
light. So, a priori, Newtonian gravity should be able to explain the Hubble flow.
One could even think that historically, Newton’s law led to the prediction of the
universe expansion, or at least, to its first interpretation. Amazingly, and for
reasons which are more mathematical than physical, it happened not to be the
case: the first attempts to describe the global dynamics of the universe came
with GR, in the 1910’s. In this course, for pedagogical purposes, we will not
follow the historical order, and start with the Newtonian approach.

1Going a little bit more into details, it is also relevant when an object is so heavy and so
close that the speed of liberation from this object is comparable to the speed of light.
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Figure 1.6: Gauss theorem applied to the local universe.

Newton himself did the first step in the argumentation. He noticed that
if the universe was of finite size, and governed by the law of gravity, then all
massive bodies would unavoidably concentrate into a single point, just because
of gravitational attraction. If instead it was infinite, and with an approximately
homogeneous distribution at initial time, it could concentrate into several points,
like planets and stars, because there would be no center to fall in. In that case,
the motion of each massive body would be driven by the sum of an infinite
number of gravitational forces. Since the mathematical tools available at that
time didn’t allow to deal with this situation, Newton didn’t proceed with his
argument.

1.3.2 The rate of expansion from Gauss theorem

In fact, using Gauss theorem, this problem turns out to be quite simple. Suppose
that the universe consists in many massive bodies distributed in an isotropic and
homogeneous way (i.e., for any observer, the distribution looks the same in all
directions). This should be a good modelling of the universe on sufficiently large
scales. We wish to compute the motion of a particle located at a distance r(t)
away from us. Because the universe is assumed to be isotropic, the problem is
spherically symmetric, and we can employ Gauss theorem on the sphere centered
on us and attached to the particle (see figure 1.6). The acceleration of any
particle on the surface of this sphere reads

r̈(t) = −GM(r(t))

r2(t)
(1.7)

where G is Newton’s constant and M(r(t)) is the mass contained inside the
sphere of radius r(t). In other words, the particle feels the same force as if it
had a two-body interaction with the mass of the sphere concentrated at the
center. Note that r(t) varies with time, but M(r(t)) remains constant: because
of spherical symmetry, no particle can enter or leave the sphere, which contains
always the same mass.

Since Gauss theorem allows us to make completely abstraction of the mass
outside the sphere2, we can make an analogy with the motion e.g. of a satellite

2The argumentation that we present here is useful for guiding our intuition, but we should
say that it is not fully self-consistent. Usually, when we have to deal with a spherically
symmetric mass distribution, we apply Gauss theorem inside a sphere, and forget completely
about the external mass. This is actually not correct when the mass distribution spreads
out to infinity. Indeed, in our example, Newtonian gravity implies that a point inside the
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k<0
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Figure 1.7: The motion of expansion in a Newtonian universe is equivalent to
that of a body ejected from Earth. It depends on the initial rate of expansion
compared with a critical density. When the parameter k is zero or negative, the
expansion lasts forever, otherwise the universe re-collapses (r → 0).

ejected vertically from the Earth. We know that this motion depends on the
initial velocity, compared with the speed of liberation from the Earth: if the
initial speed is large enough, the satellites goes away indefinitely, otherwise it
stops and falls down. We can see this mathematically by multiplying equation
(1.7) by ṙ, and integrating it over time:

ṙ2(t)

2
=
GM(r(t))

r(t)
− k

2
(1.8)

where k is a constant of integration. We can replace the mass M(r(t)) by the
volume of the sphere multiplied by the homogeneous mass density ρmass(t), and
rearrange the equation as(

ṙ(t)

r(t)

)2

=
8πG

3
ρmass(t)−

k

r2(t)
. (1.9)

The quantity ṙ/r is called the rate of expansion. SinceM(r(t)) is time-independent,
the mass density evolves as ρmass(t) ∝ r−3(t) (i.e., matter is simply diluted when
the universe expands). The behavior of r(t) depends on the sign of k. If k is
positive, r(t) can grow at early times but it always decreases at late times, like
the altitude of the satellite falling back on Earth: this would correspond to
a universe expanding first, and then collapsing. If k is zero or negative, the
expansion lasts forever.

In the case of the satellite, the critical value, which is the speed of liberation
(at a given altitude), depends on the mass of the Earth. By analogy, in the case

sphere would feel all the forces from all bodies inside and outside the sphere, which would
exactly cancel out. Nevertheless, the present calculation based on Gauss theorem does lead
to a correct prediction for the expansion of the universe. In fact, this can be rigorously
justified only a posteriori, after a full general relativistic study. In GR, the Gauss theorem
can be generalized thanks to the consequences of Birkhoff’s theorem, which is valid also when
the mass distribution spreads to infinity. In particular, for an infinite spherically symmetric
matter distribution, Birkhoff’s theorem implies that we can isolate a sphere as if there was
nothing outside of it. Once this formal step has been performed, nothing prevents us from
using Newtonian gravity and Gauss theorem inside a smaller sphere, as if the external matter
distribution was finite. This argument justifies rigorously the calculation of this section.
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of the universe, the important quantity that should be compared with some
critical value is the homogeneous mass density. If at all times ρmass(t) is bigger
than the critical value

ρmass(t) =
3(ṙ(t)/r(t))2

8πG
(1.10)

then k is positive and the universe will re-collapse. Physically, it means that the
gravitational force wins against inertial effects. In the other case, the universe
expands forever, because the density is too small with respect to the expansion
velocity, and gravitation never takes over inertia. The case k = 0 corresponds
to a kind of equilibrium between gravitation and inertia in which the universe
expands forever, following a power–law: r(t) ∝ t2/3.

1.3.3 The limitations of Newtonian predictions

In the previous calculation, we cheated a little bit: we assumed that the universe
was isotropic around us, but we didn’t check that it was isotropic everywhere
(and therefore homogeneous). Following what we said before, homogeneous
expansion requires proportionality between speed and distance at a given time.
Looking at equation (1.9), we see immediately that this is true only when k = 0.
So, it seems that the other solutions are not compatible with the Cosmological
Principle. We can also say that if the universe was fully understandable in terms
of Newtonian mechanics, then the observation of linear expansion would imply
that k equals zero and that there is a precise relation between the density and
the expansion rate at any time.

This argument shouldn’t be taken seriously, because the link that we made
between homogeneity and linear expansion was based on the additivity of speed
(look for instance at the caption of figure 1.2), and therefore, on Newtonian
mechanics. But Newtonian mechanics cannot be applied at large distances,
where v becomes large and comparable to the speed of light. This occurs around
a characteristic scale called the Hubble radius RH :

RH = cH−1, (1.11)

at which the Newtonian expansion law gives v = HRH = c.
So, the full problem has to be formulated in relativistic terms. In the GR

results, we will see again some solutions with k 6= 0, but they will remain
compatible with the homogeneity of the universe.
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Chapter 2

Homogeneous Cosmology

From now on, we will adopt units in which c = h̄ = kb = 1 in most equations.

2.1 The Lemâıtre, Friedmann, Robertson & Walker
metric

2.1.1 Cosmological background and perturbations

As already suggested in section 1.2.2, most calculations and predictions in cos-
mology are done under the assumption that the exact description of the universe
can be decomposed in two problems: the background problem (which should
be an independent, self-consistent problem) and the inhomogeneity problem
(within a given imposed background). This is the usual approach in any theory
of perturbations.

In the background problem, one assumes that in first approximation we can
see the universe as a smooth distribution of matter, i.e. that one can average
over small inhomogeneities like stars, galaxies and clusters, which are replaced
by an idealized “cosmological fluid”. The cosmological fluid can be thought to
be a truly continuous distribution of matter, or equivalently, a regular distribu-
tion of compact objects, smoothed over a bigger scale than the smallest distance
between these objects. The background problem consists in computing the evo-
lution of the cosmological fluid (i.e., the distortions due to its own gravitational
field, its possible transformations under phase transitions, etc.). The goal is to
understand e.g. the average expansion rate as a function of time, the age of the
universe, etc.

The perturbation problem consists in writing first-order (linear) perturba-
tions in a given background and solve for their evolution. The goal is to un-
derstand, for instance, the large-scale structure of the universe or the Cosmic
Microwave Background (CMB) anisotropies. The approach can even be pushed
to second-order (quadratic) perturbations, but then equations become extremely
complicated.

Of course, this approach cannot work for describing the formation of small
scale structures. For instance, the merging of two galaxies is a fully non-linear
gravitational problem which cannot be addressed by a perturbed expansion. On
the other hand, it is not necessarily sensitive to General Relativity and to the
expansion of the universe. The interesting question is to understand whether the
cosmological perturbation theory is self-consistent on the largest scales today,
and possibly on all scales in the remote past.

Today, all physicists agree that the cosmological perturbation theory pro-
vides an excellent description of the universe at early times on all scales (we
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will quantify the statement “early time” later in the course), which can accu-
rately explain e.g. observations of the CMB or of light element abundances.
In addition, a large majority of cosmologists believes that cosmological pertur-
bation theory is able to explain the structure and evolution of the universe on
the largest observables scales until today. On small scales, the relativistic cos-
mological perturbation theory should be substituted by a Newtonian non-linear
approach (involving N-body gravitational clustering simulations).

2.1.2 General Relativity in two words

Bern students following this course went through a detailed course on General
relativity during the last semester. Hence they may skip this subsection, in which
we try to summarise the main ideas of General Relativity, for people who never
learnt anything about it.

Then, in the following sections, we will derive step by step the general rel-
ativistic laws governing the evolution universe, and stress the differences with
their Newtonian counterparts.

When Einstein tried to build a theory of gravitation compatible with the
invariance of the speed of light, the equivalence principle and Newton’s law in
some particular limit, he found that the minimal price to pay was :

• to abandon the idea of a gravitational potential, related to the distribution
of matter, and whose gradient gives the gravitational field in any point.

• to assume that our four-dimensional space-time is curved, and that free-
falling objects describe geodesics in this space-time.

• to relate the properties of curvature in a given point to the properties of
matter in the same point.

What does that mean in simple words?
First, let’s recall briefly what a curved space is, first with only two-dimensional

surfaces. Consider a plane, a sphere and an hyperboloid. For us, it’s obvious
that the sphere and the hyperboloid are curved, because we can visualize them
in our three-dimensional space: so, we have an intuitive notion of what is flat
and what is curved. But if there were some two-dimensional aliens living on
these surfaces, not being aware of the existence of a third dimension, how could
they know whether they leave in a flat or in a curved space-time? There are
several ways in which they could measure it. One would be to obey the fol-
lowing prescription: walk in straight line on a distance d; turn 90 degrees left;
repeat this sequence three times again; see whether you are back at your initial
position. The aliens on the three surfaces would find that they are back there as
long as they walk along a small square, much smaller than the radius of curva-
ture. But a good test is to repeat the operation on larger and larger distances.
When the size of the square will be not so small compared the radius of cur-
vature, the alien on the sphere will notice that before stopping, he crosses the
first branch of his trajectory (see figure 2.1). The one on the hyperboloid will
stop without closing his trajectory. Another way to specify the curvature of a
two-dimensional surface is to map it with an arbitrary coordinate system (x, y),
and to use a scaling law or line element, i.e. a function dl(x, y, dx, dy) providing
a measure of infinitesimal distances as a function of position and of infinitesimal
coordinate differences. For example, on projected maps of the earth’s surface,
one should know the scaling law in order to correctly estimate distances be-
tween two points of given latitude and longitude. At the next level of precision,
the surface of the earth is curved by mountains and valleys. In a given region,
having under disposal a precise topological map with contour lines of constant
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Figure 2.1: Measuring the curvature of some two-dimensional spaces. By walk-
ing four times in straight line along a distance d, and turning 90 degrees left
between each walk, a small man on the plane would find that he is back at his
initial point. Doing the same thing, a man on the sphere would walk across his
own trajectory and stop away from his departure point. Instead, a man on the
hyperboloid would not close his trajectory.

elevation, one can use a scaling law for estimating the physical distance between
two neighboring points as a function of their latitude and longitude difference,
and of the number of contour lines between the two points.

Getting an intuitive representation of a three-dimensional curved space is
much more difficult. A 3-sphere and a 3-hyperboloid could be defined analyti-
cally as some 3-dimensional spaces obeying to the equation a2+b2+c2±d2 = R2

inside a 4-dimensional Euclidean or Minkowski space with coordinates (a, b, c, d).
If we wanted to define them by making use of only three dimensions, the problem
would be exactly like for drawing a projected map of the Earth. We would need
to specify the line element dl(x, y, z, dx, dy, dz) everywhere, within a given (arbi-
trary) coordinate system. Of course, the coordinates can be defined arbitrarily,
but the physical distances computed from dl are related to intrinsic properties of
the curved space, invariant under a change of coordinate. The scaling law leads
to the definition of a spatial metric tensor defined through dl2 = gij(x

i) dxidyj ,
and to the whole formalism of Riemannian geometry (curvature tensor, intrinsic
curvature scalar, geodesics, etc.).

That was still for three dimensions. The curvature of a four-dimensional
space-time is very difficult to visualize intuitively, first because it has even more
dimensions, and second because in special and general relativity, there is a
difference between time and space. For a given space-time manifold, one can
choose an arbitrary system of coordinates (time x0 and space x1, x2, x3) and
describe the space-time curvature by the line element ds (which represents the
infinitesimal distance betwen two closeby events rather than two closeby spatial
points). The 4×4 metric defined through ds2 = gµν(xµ) dxµdyν must have a
negative signature (i.e. negative determinant) in order to recover locally Lorentz
invariance and special relativity1.

Now, the definition of geodesics is the following. Take an initial point and
an initial direction. They define a unique line, called a geodesic, such that any
portion of the line gives the shortest trajectory between the two points (so, for
instance, on a sphere of radius R, the geodesics are all the great circles of radius
R, and nothing else). In general relativity (as in any theory of gravity respecting
the equivalence principle and hence based on geometry and a metric tensor), the
trajectories xµ(λ) of free-falling bodies are geodesics of the space-time specified

1There are two sign conventions fulfilling this condition of negative signature: the −+ ++
convention in which g00 < 0, and the +−−− convention in which g00 > 0. In this course we
will use the −+ ++ convention.
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Figure 2.2: Gravitational lensing. Somewhere between an object C and an ob-
server A, a massive object B - for instance, a galaxy - curves its surrounding
space-time. Here, for simplicity, we only draw two spatial dimensions. In ab-
sence of gravity and curvature, the only possible trajectory of light between C
and A would be a straight line. But because of curvature, the straight line is
not anymore the shortest trajectory. Photons prefer to follow two geodesics,
symmetrical around B. So, the observer will not see one image of C, but two
distinct images. In fact, if we restore the third spatial dimension, and if the
three points are perfectly aligned, the image of C will appear as a ring around
B. This phenomenon is observed in practice.

by the metric gµν . The geodesics obey to

d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0 (2.1)

and depend on curvature through the Christoffel symbols Γαµν , which in turn
can be expressed as a function of the metric as

Γαµν =
1

2
gαβ(gµβ,ν + gβν,µ − gµν,β) . (2.2)

Note that the expression of gµν and Γαµν are not invariant under a change of
coordinate, while the curvature of the underlying manifold and the ensemble
of geodesics on this manifold are intrinsic, coordinate-independent properties of
the manifold.

All free-falling bodies follow geodesics, including light rays. This leads for
instance to the phenomenon of gravitational lensing (see figure 2.2).

The Einstein theory of gravitation says that four-dimensional space-time is
curved, and that the properties of curvature in each point (related to the metric
and its derivatives) depends entirely on the matter distribution in that point.
In simple words, this means that the metric tensor plays more or less the same
role as the gravitational potential in Newtonian gravity.

So, in General Relativity, gravitation is not formulated as a force or a field,
but as the curvature of space-time, sourced by matter. All isolated systems
follow geodesics which are bent by the curvature. In this way, their trajectories
are affected by the distribution of matter around them: this is precisely what
gravitation means.

2.1.3 Frame comoving with an observer

Let us consider a free-falling observer M in an arbitrary curved space-time. The
observer’s trajectory (which is a geodesic) can be described parametrically by a
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set of functions {x1(t), x2(t), x3(t)}.
We can always perform a change of coordinates in such way that this par-

ticular observer has fixed spatial coordinates xiM : along this geodesic and in
the new coordinates, dxi/dx0 = 0 and xi = xiM . This frame is said to be
comoving with the observer, and locally all terms g0i vanish: in each point
xµ = (t, x1

M , x
2
M , x

3
M ) one has g0i(x

µ) = 0.

In addition, it is possible to define the time coordinate in such way that the

coefficient g
1/2
00 (called the lapse function) is constant all over the geodesic of

our particular observer, and equal to the speed of light c. If this is the case, the
line element between two closeby events on the observer’s trajectory is given
by ds2 = −c2(dx0)2 + gijdx

idxj = c2(dx0)2 (since dxi = 0). Hence, the time
coordinate x0 ≡ t obeys to the definition of proper time. It represents the
physical time measured by our free-falling observer.

2.1.4 Building the first cosmological models

After obtaining the mathematical formulation of General Relativity around
1916, Einstein considered various testable consequences of his theory in the
solar system (e.g., corrections to the trajectory of Mercury, or to the apparent
diameter of the sun during an eclipse). But remarkably, he immediately under-
stood that GR could also be applied to the universe as a whole, and published
some first attempts in 1917. However, Hubble’s results concerning the expan-
sion were not known at that time, and most physicists had the prejudice that
the background universe should be not only isotropic and homogeneous, but
also static – or stationary. As a consequence, Einstein (and other people like
De Sitter) found some interesting static cosmological solutions, but not the ones
that really describe our universe.

A few years later, some other physicists tried to relax the assumption of sta-
tionarity. The first was the Russian physicist Alexander Friedmann (in 1922),
followed independently by the Belgian physicist and priest Lemâıtre (in 1927),
and then by some Americans, Robertson and Walker. When the Hubble flow
was discovered in 1929, it became clear for a fraction of the scientific community
that the universe could be described by the equations of Friedmann, Lemâıtre,
Robertson and Walker. However, many people – including Hubble and Ein-
stein themselves – remained reluctant to this idea for many years. Today, the
Friedmann – Lemâıtre model is considered as one of the major achievements of
modern physics.

2.1.5 Coordinate choice in the FLRW universe

The LFRW model is the most general solution of the GR equations under the
assumption that the background universe is homogeneous and isotropic.

The fact that the universe is postulated to be homogeneous and isotropic
(but not necessarily static) means that there exist a definition of time such that
at each instant, all points and all directions are equivalent. For instance, the
energy density should only be a function of this time, not of space: ρ(xµ) =
ρ(x0).

We immediately notice that the fact of being “homogeneous, isotropic and
non-stationary” cannot be a coordinate-independent property of a given uni-
verse, by construction: it privileges a particular definition of time, or more
precisely, a particular time-slicing. A redefinition of time t −→ t′(t) does not
change the time-slicing. In the new time coordinate, at a given time t′, all spa-
tial points are still equivalent. A more general redefinition of time mixing time
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and space, t −→ t′(t, x1, x2, x3), changes the time-slicing: 3D hypersurfaces of
constant t′ are no longer homogeneous.

The easiest way to build a system of coordinates in a homogeneous universe
is to start from an initial homogeneous hypersurface, to assign it a time coor-
dinate t1 and some arbitrary spatial coordinates. In each point, we can place
an observer at rest with respect to the coordinate system: for any of these ob-
servers, dxi/dx0(t1) = 0. This is possible by assumption: since the hypersurface
is assumed to be homogeneous, there is no “force” imposing some “bulk motion”
to all observers. We then give a clock to each of our observers. These clocks
indicate the proper time measured by each of them. We define a new hypersur-
face as the ensemble of all points in space-time such that the clocks indicate a
common value t2. We assign to this hypersurface the time coordinate t2, and
some spatial coordinates such that each of our observers keeps fixed spatial co-
ordinates. This can be repeated in order to map the entire space-time with a set
of coordinates such that: all our observers keep fixed spatial coordinates; and
the time coordinate corresponds to the proper time measured by all observers.
In other words, we have built a frame which is comoving not just with one ob-
server (as in a previous subsection), but with an infinity of observers mapping
the entire space. These particular observers are called “comoving observers”,
and any set of coordinates built in that way is called a comoving coordinate
system.

In comoving coordinates and using proper time, the metric describing the
whole space-time reads

ds2 = −c2dt2 + gijdx
idxj (2.3)

in which t is the proper time, (xi) are some spatial comoving coordinates, and
gij must have a special form preserving the homogeneity and isotropy of three-
dimensional space at any given time t. We will write down this form of gij in
the next subsection. One is still free to perform some change of coordinates,
and it is worth noticing that:

• a simple redefinition of time t −→ t′(t) preserves the above form of the
metric, excepted that g00 6= −c2. The new time coordinate does not repre-
sent the proper time of comoving observers anymore, but it still defines a
time-slicing of space-time in homogeneous hypersurfaces. In the following,
we will sometimes use different definitions of the time coordinate. Physi-
cal problems can be solved with any of these time coordinates, although
observables involving physical periods of time or rates should always be
computed with the proper time of the observer making the experiment.

• an internal redefinition of spatial coordinates xi −→ xi
′
(xi) preserves the

above form, and the universe will still appear as homogeneous in the new
system. Hence, there is an infinite number of possible comoving spatial
coordinate systems. In the following we will use cartesian coordinates,
spherical coordinates, etc.

• a general change of coordinates mixing space and time would not preserve
the above form of the metric. In the new coordinate system, the universe
would not appear as homogeneous, since quantities like e.g. the spatial
curvature or the total energy density would depend on both time and
space. The new frame could represent locally the comoving frame of an
observer leaving in a homogeneous universe, but not being at rest with
the ensemble of comoving observers (who see homogeneous and isotropic
observables). Such an observer with a peculiar velocity should not per-
ceive the universe as isotropic: for instance, if the universe is filled with a
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homogeneous background of light, a non-comoving observer should see a
Doppler effect affecting the color of this light (bluer in front of him, redder
behind). It is important to understand that the FLRW assumption does
not say that all possible observers see a homogeneous universe, but simply
that there exists an ensemble of observers seeing a homogeneous universe,
and hence, a global “comoving frame”.

2.1.6 The curvature of the FLRW universe

So far, we have not specified the part gij . We only assumed that it preserves
homogeneity and isotropy. So, the curvature should be the same everywhere
at a given time. The list of possible three-dimensional spaces with constant
curvature is very short: flat Euclidean space, 3-sphere and 3-hyperboloid.

In flat space, one can use e.g. Cartesian or polar coordinates and write the
spatial line element as

dl2 = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2θ dφ2) . (2.4)

All possible changes of coordinate preserve this flatness. Let us rewrite the line
element after the simplest possible change, namely an homothetic transforma-
tion with respect to the origin of coordinates:

dl2 = a2(dx2 + dy2 + dz2) = a2[dr2 + r2(dθ2 + sin2θ dφ2)] . (2.5)

Let’s go back now to the full FLRW space-time. It is obvious that

ds2 = −c2dt2+a2(dx2+dy2+dz2) = −c2dt2+a2[dr2+r2(dθ2+sin2θ dφ2)] (2.6)

describes a flat, isotropic universe, but this universe is static. In fact we only
want the universe to be homogeneous/isotropic at any given time, so

ds2 = −c2dt2 +a(t)2(dx2 +dy2 +dz2) = −c2dt2 +a(t)2[dr2 +r2(dθ2 +sin2θ dφ2)]
(2.7)

(where we made the a factor time-dependent) is another obvious solution to
the FLRW problem leading to a homogeneous, non-stationary and spatially
flat universe. This is even the most general FLRW solution with zero spatial
curvature (as usual, modulo trivial time redefinitions and spatial changes of
coordinates)2.

Again, three-dimensional spaces with constant non-zero curvature fall in
two categories: 3-spheres and 3-hyperboloids. A convenient choice of polar
coordinate leads to the following expression for the line elements in such spaces:

dl2 =

[
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

]
(2.8)

where k is a constant number, related to the spatial curvature: if k = 0, the
universe is Euclidean (and called a “flat universe”), if k > 0, it is positively
curved (and called a “closed universe”), and if k < 0, it is negatively curved
(and called an “open universe”). In the last two cases, the radius of curvature
is given by

rc(t) =
1√
|k|
. (2.9)

2Above, we performed a homothetic transformation of coordinates and allowed the factor
appearing in the transformation to become a time-dependent function. We could have made
a different transformation, generating other factors, and tried to make these other factors
time-dependent. But in general this would break homogeneity and isotropy, unless the time-
dependent factor can be factored out like in the above solution!
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When k > 0, the universe has a finite volume, and the coordinate r is defined
only in the range 0 ≤ r < rc. This is the reason for which positively curved
universes are usually called “closed”. The terms “open universe” just refer to
the opposite case.

The most general solution for an homogeneous, isotropic, non-stationary
universe is obtained again by multiplying the above spatial line element by the
square of a time-dependent factor a(t) called the scale factor:

ds2 = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

]
. (2.10)

The corresponding metric is called the FLRW metric (in comoving spherical
coordinates). So, in three-dimensional space, infinitesimal physical distances
dl are always given by the scale factor a(t) times the comoving line element
computed from eq. (2.8). This is still true for a macroscopic length obtained
by integrating dl over a given path in three-dimensional space: in the FRLW
universe, the physical size of an object at a given time is always equal to its
comoving size multiplied by the scale factor at that time3. In particular we
can immediately notice that the physical size of the radius of curvature in the
FLRW universe is

Rphysical
c (t) =

a(t)√
|k|
. (2.11)

The previous expression in eq. (2.9) provides only the comoving radius of cur-
vature. Note that r and a(t) can always be rescaled by r −→ r

√
|k|, a(t) −→

a(t)/
√
|k|. After the rescaling, the metric reads like in eq. (2.10), but with

k restricted to the three possible values +1 (positive curvature), 0 (flat) or -1
(negative curvature) without loss of generality.

We know that observers at rest with the cosmological fluid have fixed co-
moving coordinates (it is trivial to check that all trajectories parametrized by
(xi = xiM=constant) are solutions of the geodesics equations in the FLRW met-
ric). This doesn’t mean that the universe is static, because all distances grow
proportionally to a(t): so, the scale factor accounts for the homogeneous ex-
pansion. An analogy helps in understanding this concept. Let us take a rubber
balloon and draw some points on the surface. Then, we inflate the balloon. The
distances between all the points grow proportionally to the radius of the balloon.
This is not because the points have a proper motion on the surface, but because
all the lengths on the surface of the balloon increase with time. In other words,
in general relativity, the universe expansion is not described anymore through
the velocity of objects like in Newtonian cosmology, but through the expansion
of the background spacetime.

Intuitively, the FLRW metric describes a curved space-time with two types
of curvature:

• the spatial curvature, described by ±a(t)/
√
|k| at each time.

• the space-time curvature described by the time evolution of a(t).

The second is maybe more difficult to visualize as a curvature term, but we will
see later that both terms contribute e.g. to the curvature of light ray trajectories
in space-time. In a few sections, we will also see that the scale factor defines an
actual radius of curvature, the Hubble radius RH(t) = ca(t)/ȧ(t).

If k was equal to zero and a was constant in time, we could redefine the
coordinate system with (r′, θ′, φ′) = (ar, θ, φ), obtain the Minkowski metric and

3We will see however in the next sections that due to the finite speed of light, speaking
of macroscopic distance in cosmology can be somewhat subtle and require more work and
definitions.
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go back to Newtonian gravity. So, we stress again that the curvature really
manifests itself as k 6= 0 (for spatial curvature) and ȧ 6= 0 (for the remaining
space-time curvature).

Note finally that in the rest of the course, some equations may take a simpler
form after the time redefinition dt = a(t)dτ . In this case, the time dependence
factors out from the full FLRW line element:

ds2 = a2(τ)

(
−c2dτ2 +

[
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

])
(2.12)

where the scalar factor a(t) as been re-expressed as a function of the new time
variable τ . This metric exhibits conformal symmetry; hence, τ is called confor-
mal time, by opposition to the proper time t, also called cosmological time.

2.2 Curvature of light-rays in the FLRW uni-
verse

Our goal in this section is to understand the concrete consequences of the uni-
verse expansion for observers looking at the sky. Hence, we need to understand
how light rays propagate in the universe.

2.2.1 Photon geodesics

Photon propagate in the vacuum at the speed of light along geodesics. Hence,
over an infinitesimal time interval dt, they run over a distance dl2 = c2dt2. On
macroscopic scales, the relation between distance and time is given by integrat-
ing dl = ±cdt over the geodesic.

By definition, we are only interested in photons reaching us at some point,
and allowing us to observe an object. Lets us consider that we are a comoving
observer and choose the origin of spherical comoving coordinates to coincide
with us (this choice is only made for getting simple calculations; it doesn’t
imply at all that we occupy some privileged point in space or anything like
that). In the FLRW universe, a photon reaching us with a momentum aligned
with a given direction (θe, φe) must have travelled along a straight line in space,
starting from an unknown emission point (re, θe, φe). If its spatial trajectory
was not a straight line, there would be a contradiction with the assumption of
an isotropic universe. However the photon trajectory in space-time is curved,
as can be checked by integrating over the infinitesimal distance between the
emission point (te, re, θe, φe) and a later point (t, r, θe, φe) with t > te, r < re:∫ r

re

− dr√
1− kr2

=

∫ t

te

c dt

a(t)
(2.13)

On can check that this trajectory is indeed a solution of the geodesic equa-
tion, and that it corresponds to a curved trajectory in space-time: if we draw
this trajectory in two-dimensional (t, r) space, we see that the slope dr/dt =
−c
√

1− kr2/a(t) changes along the trajectory. The photon is seen by the ob-
server (at the origin of coordinates) at a reception time t0 which can be deduced
from re and te through the implicit relation:∫ 0

re

− dr√
1− kr2

=

∫ t0

te

c dt

a(t)
. (2.14)

The ensemble of all points (te, re, θ, φ) for which eq. (2.14) holds define our past
light-cone at time t0, as illustrated in figure 2.3. Note that the right-hand side
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Figure 2.3: An illustration of the propagation of photons in our universe, skip-
ping one spatial dimension. We are sitting at the origin, and at a time t0 we
can see the light of a galaxy emitted at (te, re, θe). Before reaching us, this
light has travelled over a trajectory which is straight in three-dimensional space
(constant angles), but curved in space-time. In any point, the slope dr/dt is
given by equation (2.13). So, the relation between re, t0 and te depends on the
spatial curvature and on the scale factor evolution. The trajectory would be a
straight line in space-time only if k = 0 and a = constant, i.e., in the limit of
Newtonian mechanics in Euclidean space. The ensemble of all possible photon
trajectories crossing r = 0 at t = t0 is called our “past light cone”, visible here
in orange. Asymptotically, near the origin, it can be approximated by a linear
cone with dl = cdt, showing that at small distance, the physics is approximately
Newtonian. Important remark: here, the past line cone has be drawn
as a convex cone. Instead, for realistic cosmological scenarios, the
cone is concave.

corresponds exactly to the conformal time interval (τr − τe) times the speed of
light.

The equation (2.13) describing the propagation of light (more precisely, of
radial incoming photons) is extremely useful - probably, one of the two most
useful equations of cosmology, together with the Friedmann equation, that we
will present soon. It is on the basis of this equation that we are able today
to measure the curvature of the universe, its age, its acceleration, and other
fundamental quantities.
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2.2.2 A new definition of redshift

First, a simple calculation based on equation (2.13) gives the redshift associated
with a given source of light. Let’s still play the role of a comoving observer sitting
at the origin of coordinates. We observe a galaxy located at (re, θe, φe), emitting
light at a given frequency λe. The corresponding wave crests are emitted by the
galaxy at a frequency νe = c/λe with a period dte ≡ 1/νe. Each wave crests
follows the trajectory described by eq. (2.13). We receive the light signal with
a frequency νr = c/λr = 1/dtr such that∫ 0

re

− dr√
1− kr2

=

∫ tr

te

dt

a(t)
=

∫ tr+dtr

te+dte

dt

a(t)
. (2.15)

The second equality gives:∫ te+dte

te

dt

a(t)
=

∫ tr+dtr

tr

dt

a(t)
. (2.16)

Hence in very good approximation:

dte
a(te)

=
dtr
a(tr)

. (2.17)

We infer a simple relation between the emission and reception wavelengths:

λr
λe

=
dtr
dte

=
a(tr)

a(te)
. (2.18)

This result could have been easily guessed: a wavelength is a distance, subject
to the same stretching as all physical distances when the scale factor increases.
Hence, in the FLRW universe, the redshift imposed by the expansion is given
by

z =
∆λ

λ
=
λr − λe
λe

=
a(tr)

a(te)
− 1 . (2.19)

In other words, if we observe an object now, at time t0, its absorption lines are
redshifted by a factor

z =
a(t0)

a(te)
− 1 . (2.20)

This is a crucial difference with respect to Newtonian mechanics, in which
the redshift was defined as z = v/c, and seemed to be limited to |z| < 1. The
true GR expression doesn’t have such limitations, since the ratio of the scale
factors can be arbitrarily large without violating any fundamental principle.
And indeed, observations do show many objects - like quasars - at redshifts of
z ∼ 4 or even bigger. We’ll see later that we also observe the Cosmic Microwave
Background at a redshift of approximately z = 1100!

Note finally that in the real perturbed universe, objects are never exactly
comoving, they have small peculiar velocities ~vc with respect to the comoving
frame. Hence, the observed redshift is given by the sum of a General Relativity
contribution given by eq. (2.20), and a Doppler contribution given by (~vc · n̂)/c.
The second term rarely exceeds O(10−3), while the first term grows from zero
for nearby objects to infinity for remote objects. Hence, we expect that at
very short distances, the Doppler contribution can dominate, while at larger
distances the GR contribution takes over.
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2.2.3 A new definition of the Hubble parameter

In the limit of small redshift, we expect to recover the Newtonian results, and
to find a relation similar to z = v/c = HL/c (where L is the physical distance
to the object). To show this, let’s assume again that t0 is the present time, and
that we are a comoving observer at r = 0. We want to compute the redshift of
a nearby galaxy, which emitted the light that we receive today at a time t0−dt.
In the limit of small dt, the equation of propagation of light shows that the
physical distance L between the galaxy and us is simply

L ' dl = c dt (2.21)

while the redshift of the galaxy is

z =
a(t0)

a(t0 − dt)
− 1 ' a(t0)

a(t0)− ȧ(t0)dt
− 1 =

1

1− ȧ(t0)
a(t0)dt

− 1 ' ȧ(t0)

a(t0)
dt . (2.22)

By combining these two relations we obtain

z ' ȧ(t0)

a(t0)
L/c . (2.23)

So, at small redshift, we recover the Hubble law, and the role of the Hubble
parameter is played by ȧ(t0)/a(t0). In the Friedmann universe, we will define
the Hubble parameter at any time as the expansion rate of the scale factor:

H(t) =
ȧ(t)

a(t)
. (2.24)

The current value of the Hubble parameter (the one measured by Hubble him-
self) will be noted as H0.

We have proved that in the FLRW universe, the proportionality between
distance and velocity (or redshift) is recovered for small distances and redshifts.
What happens at larger distance? This question actually raises a non-trivial
problem: the definition of distances for objects which are so far from us that
the (Euclidean) approximation L = dl = dt becomes inaccurate.

2.2.4 The notion of distance to an object

Let us assume again that sitting at the origin of spherical coordinates at time t0,
we observe a remote comoving object emitting light from (te, re, θe, φe). What
is the physical distance to the object? This question is ambiguous in an ex-
panding universe. Are we asking about the distance in units of today, i.e. the
distance between us and the position of this object today? If it is a comov-
ing object, it should be located now at coordinates (t0, re, θe, φe). Then, the
distance computed on the constant-time hypersurface with t = t0 is given by

d =

∫ re

0

dl = a(t0)

∫ re

0

dr√
1− kr2

. (2.25)

Very often, the scale factor is defined in such way that a(t0) = 1, and the above
distance d coincides with the comoving distance χ(re):

χ(re) ≡
∫ re

0

dr√
1− kr2

, (2.26)

which can be integrated to

χ(r) =


sin−1(r) if k = 1,
r if k = 0,

sinh−1(r) if k = −1.
(2.27)
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Hence, it is useful to define the function

fk(x) ≡

 sin(x) if k = 1,
x if k = 0,
sinh(x) if k = −1,

(2.28)

so that r = fk(χ).
It follows from eq. (2.14) that χ(r) is equal to the conformal age of the

object, (τ0 − τe), times the speed of light:

χ(r) =

∫ t0

te

c dt

a(t)
= c(τ0 − τe) . (2.29)

At this point, conformal time takes a particular signification: it is a particular
measure of time, which is equal to the comoving distance traveled by a light
signal divided by c. In units in which c = 1 and assuming a(t0) = 1, both χ and
τ can be expressed in units of physical distances today, e.g. in Mega-parsecs.
These are indeed the most comon units for comoving distance and conformal
time.

Comoving distances are well-defined quantities, up to a choice of normaliza-
tion for a(t). They are used by observers in many circumstances. By construc-
tion, the comoving distance between two comoving objects does not depend on
time, unlike the physical distance between them. However, this is a purely con-
ventional and rather artificial definition of distances, since we can’t see remote
objects today - they might even have disappeared. Anyway, we should not argue
about the definition of distances, because distances are not directly measurable
quantities in cosmology. We should concentrate on experimental, indirect ways
to probe them. Each experimental technique will lead to a particular definition
of distance.

In astrophysics, distances are usually measured in three ways:

• From the redshift. In principle the observed redshift of objects measures
the ratio a(t0)/a(te) plus corrections due to the local effects of small-scale
inhomogeneities (peculiar velocity of the object, ...). On very large dis-
tances, one can neglect the impact of inhomogeneities and assume in first
approximation that the observed redshift is really equal to a(t0)/a(te)−1.
Then, if we know in advance the function a(t), we can identify the time
te and compute the comoving distance χ(te) by integrating (c dt/a(t))
from te to t0. This method is (in first approximation) the one used by
observers trying to infer the spatial distribution of galaxies from galaxy
redshift surveys. The distance reported in pictures showing the distribu-
tion of galaxies in slices of our universe is obtained in that way. However,
it assumes an a priori knowledge of the function a(t). In many cases, this
function is precisely what one wants to measure.

• From the angular diameter of standard rulers. Surprisingly, there exist
a few objects in astrophysics and cosmology which physical size can be
known in advance, given some physical properties of these objects. They
are called standard rulers. In the next chapters we will introduce one
example of standard ruler: the sound horizon at decoupling, “observed” in
CMB anisotropies. In Euclidean space, the distance d to a spherical object
can be inferred from its physical diameter dl and its angular diameter dθ
through dl = d × dθ. In FLRW cosmology, although the geometry is
not Euclidean, we will adopt exactly this relation as one of the possible
definitions of distance. The corresponding quantity is called the angular
diameter distance dA,

dA ≡
dl

dθ
. (2.30)
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In Euclidean space, dA would be proportional to the usual Euclidean dis-
tance to the object and therefore to its redshift. In the FLRW universe,
the relation between the angular diameter distance and the redshift is
non-trivial and depends on the spacetime curvature, as we shall see in the
next subsection.

• From the luminosity of standard candles. As we have seen already with
Cepheids, there exists also objects called standard candles for which the
absolute luminosity (i.e. the total luminous flux emitted per unit of time)
can be estimated independently of its distance and apparent luminosity.
In Euclidean space, the distance could be inferred from the absolute lumi-
nosity L and apparent one l through l = L/(4πd2). In cosmology, although
the geometry is not Euclidean, we will adopt exactly this relation as one of
the possible definitions of distance. The corresponding quantity is called
the luminosity distance dL,

dL ≡
√

L

4πl
. (2.31)

In Euclidean space, dL would be again proportional to the usual Euclidean
distance to the object and therefore to its redshift, while in the FLRW
universe the relation between the luminosity distance and the redshift is
as subtle as for the angular diameter distance.

2.2.5 Angular diameter distance – redshift relation

Recalling that in Euclidean space with Newtonian gravity and homogeneous
(linear) expansion, one has z = v/c and v = H0d, we easily find a trivial
relation between the angular diameter distance and the redshift:

dA = d = (c/H0) z. (2.32)

In General Relativity, because of the bending of light-rays by gravity, the steps
of the calculation are different. Using the definition of infinitesimal distances
(2.10), we see that the physical size dl (evaluated at time te) of an object
orthogonal to the line of sight is related to its angular diameter dθ through

dl = a(te) re dθ (2.33)

where te is the time at which the galaxy emitted the light ray that we observe
today on Earth, and re is the comoving coordinate of the object. Hence

dA = a(te) re = a(t0)
re

1 + ze
. (2.34)

We can replace re using Eqs. (2.26) - (2.29):

dA =
a(t0)

1 + ze
fk(χ) (2.35)

=
a(t0)

1 + ze
fk

(∫ t0

te

c dt

a(t)

)
(2.36)

=
a(t0)

1 + ze
fk

(∫ a0

ae

c da

a2H(a)

)
(2.37)

=
a(t0)

1 + ze
fk

(∫ ze

0

c dz

a(t0)H(z)

)
(2.38)



2.2. CURVATURE OF LIGHT-RAYS IN THE FLRW UNIVERSE 31

’
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dl

r

to

te

re eθ
eθ

re

Figure 2.4: Angular diameter – redshift relation. We consider an object of fixed
size dl and fixed redshift, sending a light signal at time te that we receive at
present time t0. All photons travel by definition with θ =constant. However, the
bending of their trajectories in the (t, r) plane depends on the spatial curvature
and on the scale factor evolution. So, for fixed te, the comoving coordinate of
the object, re, depends on curvature. The red lines are supposed to illustrate
the trajectory of light in a flat universe with k = 0. If we keep dl, a(t) and
te fixed, but choose a positive value k > 0, we infer from equation (2.13) that
the new coordinate re

′ has to be smaller. But dl is fixed, so the new angle
dθ′ has to be bigger, as easily seen on the figure for the purple lines. So, in a
positively curved universe, objects are seen under a larger angle. Conversely, in
a negatively curved universe, they are seen under a smaller angle. Important
remark: here, the past line cone has be drawn as a convex cone.
Instead, for realistic cosmological scenarios, the cone is concave.

If we know the the curvature sign k and the function H(z) up to ze, we can
compute dA as a function of ze. The function dA(ze) is called the “angular
diameter distance – redshift relation”.

A generic consequence is that in the Friedmann universe, for an object of
fixed size and redshift, the angular diameter depends on the spatial curvature
- as illustrated graphically in figure 2.4. Therefore, if we know in advance
the physical size of an object, we can measure on the one hand its angular
diameter, on the other hand its redshift ze, and then look for cosmological
models predicting the correct value for dA(ze).
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2.2.6 Luminosity distance – redshift relation

In absence of expansion and curvature, dL would simply correspond to the
Euclidean distance to the source. On the other hand, in general relativity, it is
easy to understand that the apparent luminosity is given by

l =
L

4π a2(t0) r2
e(1 + ze)2

(2.39)

leading to

dL = a(t0) re(1 + ze) . (2.40)

Let us explain this result. First, the reason for the presence of the factor
[4π a2(t0) r2

e ] in equation (2.39) is obvious. The photons emitted at a comoving
coordinate re are distributed today on a sphere of comoving radius re surround-
ing the source. Following the expression for infinitesimal distances (2.10), the
physical surface of this sphere is obtained by integrating over the infinitesimal
surface element dS2 = a2(t0) r2

e sinθ dθ dφ, which gives precisely 4π a2(t0) r2
e . In

addition, we should keep in mind that L is a flux (i.e., an energy by unit of
time) and l a flux density (energy per unit of time and surface). But the energy
carried by each photon is inversely proportional to its physical wavelength, and
therefore to a(t). This implies that the energy of each photon has been divided
by (1 + ze) between the time of emission and now, and explains one of the two
factors (1 + ze) in (2.39). The other factor comes from the change in the rate at
which photons are emitted and received (we have already seen in section 2.2.2
that since λ scales like (1 + ze), both the energy and the frequence scale like
(1 + ze)

−1).

We see that the luminosity distance is not indepent from the angular dis-
tance:

dL = a(t0) re (1 + ze) = a(te) re (1 + ze)
2 = (1 + ze)

2dA . (2.41)

Like dA, the luminosity distance can be written formally as a function of ze:

dL = a(t0) (1 + ze) fk

(∫ ze

0

c dz

a(t0)H(z)

)
. (2.42)

Again, we would need to know the function H(z) and the value of k in order
to calculate explicitly the luminosity distance – redshift relation dL(ze). In
the limit z −→ 0, the three definition of distances given in the past sections
(namely: a(t0)χ, dA and dL) are all equivalent and reduce to the usual definition
of distance d in Euclidean space, related to the redshift through d = z(c/H0).
Hence, the measurement of dA(z) and dL(z) at small redshift does not bring new
information with respect to a Hubble diagram (i.e., it only allows to measure
one number H0), while measurements at high redshift depend on the spatial
curvature and the dynamics of expansion. We will see in the next chapter that
dL(z) has been measured for many supernovae of type Ia till roughly z ∼ 2,
leading to one of the most intriguing discovery of the past years.

In summary of this section, according to General Relativity, the homoge-
neous universe is curved by its own matter content, and the space–time curva-
ture can be described by one number plus one function: the comoving spatial
curvature k, and the scale factor a(t). We should now be able to relate these
two quantities with the source of curvature: the matter density.
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2.3 The Friedmann law

In the rest of this course, we will use units such that c = h̄ = kB = 1 for
simplicity.

2.3.1 Einstein’s equation

The relationship between the properties of matter in one point and those of
curvature in the same point is given by the Einstein equation

Gµν = 8πG Tµν . (2.43)

The Einstein tensor Gµν can be computed for the FLRW metric using Christof-
fel’s symbols. It is found to be diagonal (G0i = Gi 6=j = 0) and isotropic
(G11 = G22 = G33). In fact, only diagonal and isotropic Einstein and energy-
momentum tensors are compatible with the assumption of a homogeneous,
isotropic universe with a comoving coordinate system. The most general energy-
momentum tensor in such an idealized universe must be in the form

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (2.44)

where ρ and p stand for the energy density and pressure of the cosmological
fluid. The first component of the Einstein equation reads

G00 = 3

[
k

a2
+

(
ȧ

a

)2
]
. (2.45)

This expression is interesting to discuss. In units with c = 1, G00 appears
with the dimension of an inverse squared distance, representing intuitively the
curvature of the space-time manifold. Here, indeed, G00 is the sum of the inverse
squared spatial curvature radius, Rc(t) = ±a/

√
|k|, and of the inverse squared

Hubble radius, RH(t) = a/ȧ, with a multiplicative factor 3 (coming from the
number of spatial dimensions). We see that the Hubble radius really plays the
role of a curvature radius for space-time. We can write now the first Einstein
equation G00 = 8πG T00 in the FLRW universe,

3

[
k

a2
+

(
ȧ

a

)2
]

= 8πGρ , (2.46)

or equivalently,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (2.47)

The above relation between the scale factor a(t), the comoving spatial curva-
ture k and the homogeneous energy density of the universe ρ(t) is called the
Friedmann law. Together with the propagation of light equation, this law is the
key ingredient of the Friedmann-Lemâıtre model.

In special/general relativity, the total energy of a particle is the sum of its
rest energy E0 = mc2 (i.e. E0 = m in units c = 1), plus its momentum energy.
So, if we consider only non-relativistic particles like those forming galaxies, we
can neglect the momentum energy and write ρ = ρmass. Then, the Friedmann
equation looks exactly like the Newtonian expansion law (1.9), excepted that
the function r(t) (representing previously the position of objects) is replaced
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by the scale factor a(t). Of course, the two equations look the same, but they
are far from being equivalent. First, we have already seen in section 2.2.2 that
although the distinction between the scale factor a(t) and the classical position
r(t) is irrelevant at short distance, the difference of interpretation between the
two is crucial at large distances – of order of the Hubble radius (in particular,
in one case the existence of objects with d > RH and z > 1 is violating the
speed-of-light limit, in the other case it is not). Second, we have seen in section
1.3.3 that the term proportional to k seems to break the homogeneity of the
universe in the Newtonian formalism, while in the Friedmann model, when it
is correctly interpreted as the spatial curvature term, it is perfectly consistent
with the Cosmological Principle.

The next crucial difference between the Friedmann law and the Newtonian
expansion law is the possibility to account for a homogeneous, isotropic fluid of
relativistic particles, as we shall see in the next subsection.

2.3.2 Energy conservation

The Einstein equation implies Bianchi identities of the form Gνµ;ν = T νµ;ν =
0. The first Bianchi identity T ν0;ν = 0 is nothing but the energy conservation
equation. In the FLRW universe it reduces to:

ρ̇ = −3
ȧ

a
(ρ+ p) . (2.48)

Hence, the relation between ρ and a (i.e. the way in which the energy gets
diluted with the universe expansion) depends crucially on the pressure – or
more precisely, on the equation of state p(ρ). The most important limiting case
in cosmology are:

• non-relativistic matter. In the limit of strongly non-relativistic matter,
such as comobile objects, the negligible kinetic energy implies p = 0 (in
absence of kinetic energy, a box enclosing the fluid would not feel any kind
of pressure). If the comobile fluid represents a large-scale approximation
for a homogeneous distribution of galaxies, then this approximation is fine.
Hence:

ρ̇ = −3
ȧ

a
ρ ⇒ ρ ∝ a−3. (2.49)

This result is obvious. For objects with negligible velocities, the energy
density is equal to the mass density, which is conserved inside any given
comoving volume, since the number of comobile objects in a comoving
volume is by definition constant. Since a comoving volume V increases
like V ∝ a3 in physical units, ρ decreases like a−3.

• ultra-relativistic matter. In the limit of ultra-relativistic matter, such as
photons or massless neutrinos, the particle velocity v = c generates pres-
sure. We know from statistical thermodynamics that an ultra-relativistic
gas has an equation of state p = ρ/3. Hence:

ρ̇ = −3
ȧ

a
(1 +

1

3
)ρ = −4

ȧ

a
ρ ⇒ ρ ∝ a−4. (2.50)

We conclude that an ultra-relativistic fluid dilutes faster than a non-
relativistic medium with the universe expansion. This can be under-
stood in the following way. A homogeneous, ultra-relativistic fluid can
be thought to be a gas of fast moving particles, each with v = c, ei-
ther free-streaming or interacting with Brownian motions, such that at
any time the density of particles is the same everywhere in the universe.
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The cosmological fluid invoked in the FLRW model could include such a
component. In this case, at a given time, a comoving volume V contains
N ultra-relativistic particles of individual energy E = ν = 1/λ (still in
units with c = h̄ = 1). As time passes by, V increases like a3, N is fixed
(the particles move in and out of the volume, but the number of parti-
cles remains constant, otherwise the assumption of homogeneity would
be violated, since V would become an over dense or underdense region).
Finally, E scales like a−1. Hence the energy density in the volume scales
like ρ ∝ E/V ∝ a−4.

In the jargon of cosmology, the ultra-relativistic component of the cosmo-
logical fluid is usually called “radiation”, while the word “matter” is reserved
to the non-relativistic one. The Friedmann equation is true for any types of
matter, relativistic or non-relativistic; if there are different species, the total
energy density ρ is the sum over the density of all species.

2.3.3 Cosmological constant

When Einstein introduced its theory, he noticed that a simple geometrical term
can be added to the left-hand side without violating any principle:

Gµν + Λgµν = 8πG Tµν . (2.51)

The number Λ (which has the dimension of an inverse squared time, as can
be seen when c is restored) should depend neither on space, nor on time. It
is called the cosmological constant. At some point Einstein proposed that Λ
could be non-zero and negative in order to allow for a static solution to the
universe equations. Then he stepped back. Anyway, since we can write the
above equation as

Gµν = 8πG Tµν − Λgµν , (2.52)

or

Gµν = 8πG Tµν − Λgµν , (2.53)

with gµν = gµαgαν = δµν , we see that the cosmological constant above is rigor-
ously equivalent to a homogeneous fluid with energy-momentum tensor

T̃µν = − Λ

8πG
δµν =


− Λ

8πG 0 0 0
0 − Λ

8πG 0 0
0 0 − Λ

8πG 0
0 0 0 − Λ

8πG

 . (2.54)

By comparison with eq. (2.44), we find that this fluid has ρ = −p = Λ/8πG.
Looking at eq. (2.48), we see that the equation of state p = −ρ implies ρ̇ = 0,
consistently with the fact that Λ should not vary with time.

A priori, a cosmological constant could be present in the universe, either
as a purely geometrical term (as in the Einstein proposal) or as some form of
energy never being diluted. The vacuum energy which appears in quantum field
theory (in particular, during a phase transition such as a spontaneous symmetry
breaking) is of this kind: it does not dilute, and as long as the fundamental
state of the theory is invariant, it remains indistinguishable from a cosmological
constant. We will see that this term is probably playing an important role in
our universe.
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Figure 2.5: Evolution of the square of the Hubble parameter, in a scenario in
which all typical contributions to the universe expansion (radiation, matter,
curvature, cosmological constant) dominate one after each other.

2.3.4 Various possible scenarios for the history of the uni-
verse

Let us write the Friedmann law including all possible contributions to the ho-
mogeneous cosmological fluid mentioned so far:

H2 =

(
ȧ

a

)2

=
8πG

3
ρR +

8πG

3
ρM − k

a2
+

Λ

3
(2.55)

where ρR is the radiation density and ρM the matter density. The order in which
we wrote the four terms on the right–hand side – radiation, matter, spatial
curvature, cosmological constant – is not arbitrary. Indeed, they evolve with
respect to the scale factor as a−4, a−3, a−2 and a0. So, if the scale factors keeps
growing, and if these four terms are present in the universe, there is a chance
that they all dominate the expansion of the universe one after each other (see
figure 2.5). Of course, it is also possible that some of these terms do not exist
at all, or are simply negligible. For instance, some possible scenarios would be:

• only matter domination, from the initial singularity until today (we’ll come
back to the notion of Big Bang later).

• radiation domination → matter domination today.

• radiation dom. → matter dom. → curvature dom. today

• radiation dom. → matter dom. → cosmological constant dom. today

But all the cases that do not respect the order (like for instance: curvature
domination → matter domination) are impossible.

During each stage, if we assume that one component strongly dominates the
others, the behavior of the scale factor, Hubble parameter and Hubble radius
are given by:

1. Radiation domination:

ȧ2

a2
∝ a−4, a(t) ∝ t1/2, H(t) =

1

2t
, RH(t) = 2t. (2.56)
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So, the universe is in decelerated power–law expansion.

2. Matter domination:

ȧ2

a2
∝ a−3, a(t) ∝ t2/3, H(t) =

2

3t
, RH(t) =

3

2
t. (2.57)

Again, the universe is in power–law expansion, but it decelerates more
slowly than during radiation domination.

3. Negative curvature domination (k < 0):

ȧ2

a2
∝ a−2, a(t) ∝ t, H(t) =

1

t
, RH(t) = t. (2.58)

A negatively curved universe dominated by its curvature is in linear ex-
pansion.

4. Positive curvature domination: if k > 0, and if there is no cosmological
constant, the right–hand side finally goes to zero: expansion stops. After,
the scale factor starts to decrease. H is negative, but the right–hand side
of the Friedmann equation remains positive. The universe recollapses. We
know that we are not in such a phase, because we observe the universe
expansion. But a priori, we might be living in a positively curved universe,
slightly before the expansion stops.

5. Cosmological constant domination:

ȧ2

a2
→ constant, a(t) ∝ exp(Λt/3), H = 1/RH =

√
Λ/3. (2.59)

The universe ends up in exponentially accelerated expansion.

So, in all cases, there seems to be a time in the past at which the scale factor
goes to zero, called the initial singularity or the “Big Bang”. The Friedmann
description of the universe is not supposed to hold until a(t) = 0. At some time,
when the density reaches a critical value called the Planck density, we believe
that gravity has to be described by a quantum theory, where the classical notion
of time and space disappears. Some proposals for such theories exist, mainly in
the framework of “string theories”. Sometimes, string theorists try to address
the initial singularity problem, and to build various scenarios for the origin of
the universe. Anyway, this field is still very speculative, and of course, our
understanding of the origin of the universe will always break down at some
point. A reasonable goal is just to go back as far as possible, on the basis of
testable theories.

The future evolution of the universe heavily depends on the existence of a
cosmological constant. If the latter is exactly zero, then the future evolution
is dictated by the curvature (if k > 0, the universe will end up with a “Big
Crunch”, where quantum gravity will show up again, and if k ≤ 0 there will be
eternal decelerated expansion). If instead there is a positive cosmological term
which never decays into matter or radiation, then the universe necessarily ends
up in eternal accelerated expansion.

2.3.5 Cosmological parameters

In order to know the past and future evolution of the universe, it would be
enough to measure the present density of radiation, matter and Λ, and also to
measure H0. Then, thanks to the Friedmann equation, it would be possible to
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extrapolate a(t) at any time4. Let us express this idea mathematically. We take
the Friedmann equation, evaluated today, and divide it by H2

0 :

1 =
8πG

3H2
0

(ρR0 + ρM0)− k

a2
0H

2
0

+
Λ

3H2
0

. (2.60)

where the subscript 0 means “evaluated today”. Since by construction, the
sum of these four terms is one, they represent the relative contributions to the
present universe expansion. These terms are usually written

ΩR =
8πG

3H2
0

ρR0, (2.61)

ΩM =
8πG

3H2
0

ρM0, (2.62)

Ωk = − k

a2
0H

2
0

, (2.63)

ΩΛ =
Λ

3H2
0

, (2.64)

(2.65)

and the “matter budget” equation is

ΩR + ΩM + Ωk + ΩΛ = 1. (2.66)

The universe is flat provided that

Ω0 ≡ ΩR + ΩM + ΩΛ (2.67)

is equal to one. In that case, as we already know, the total density of matter,
radiation and Λ is equal at any time to the critical density

ρc(t) =
3H2(t)

8πG
. (2.68)

Note that the parameters Ωx, where x ∈ {R,M,Λ}, could have been defined as
the present density of each species divided by the present critical density:

Ωx =
ρx0

ρc0
. (2.69)

The physical density today ρx0 of a component can be expressed in standard
units, e.g. g.cm−3. Another alternative is to decompose it as:

ρx0 = Ωx
3H2

0

8πG
= Ωxh

2 3(100 km.s−1.Mpc−1)2

8πG
(2.70)

= Ωxh
2 × 1.8788× 10−29g.cm−3 . (2.71)

Hence, the physical density can be parametrized with the dimensionless number
Ωxh

2. Later we will adopt the notation ωx ≡ Ωxh
2.

So far, we conclude that the evolution of the Friedmann universe can be
described entirely in terms of four parameters, called the “cosmological param-
eters”:

ΩR,ΩM,ΩΛ, H0. (2.72)

One of the main purposes of observational cosmology is to measure the value of
these cosmological parameters.

4At least, this is true under the simplifying assumption that one component of one type
does not decay into a component of another type: such decay processes actually take place in
the early universe, and could possibly take place in the future.



Chapter 3

The Hot Big Bang
cosmological model

3.1 Historical overview

Curiously, after the discovery of the Hubble expansion and of the Friedmann
law, there were no significant progresses in cosmology for a few decades. The
most likely explanation is that most physicists were not considering seriously the
possibility of studying the universe in the far past, near the initial singularity,
because they thought that it would always be impossible to test any cosmological
model experimentally.

Nevertheless, a few pioneers tried to think about the origin of the universe.
At the beginning, for simplicity, they assumed that the expansion of the universe
was always dominated by a single component, the one forming galaxies, i.e.,
pressureless matter. Since going back in time, the density of matter increases
as a−3, matter had to be very dense at early times. This was formulated as the
“Cold Big Bang” scenario.

According to Cold Big Bang, in the early universe, the density was so high
that matter had to consist in a gas of nucleons and electrons. Then, when the
density fell below a critical value, some nuclear reactions formed the first nu-
clei - this era was called Nucleosynthesis. But later, due to the expansion, the
dilution of matter was such that nuclear reactions were suppressed (in general,
the expansion freezes out all processes whose characteristic time–scale becomes
smaller than the so–called Hubble time–scale H−1). So, only a given number of
nuclei had time to form, in some proportions which remained frozen afterward.
After Nucleosynthesis, matter consisted in a gas of nuclei and electrons, with
electromagnetic interactions. When the density became even smaller, they fi-
nally combined into atoms – this second transition is called recombination. At
late time, any small density inhomogeneity in the gas of atoms was enhanced
by gravitational interactions. The atoms started to accumulate into clumps like
stars and planets - but this is a different story.

In the middle of the XX-th century, a few particle physicists tried to build
the first models of Nucleosynthesis – the era of nuclei formation. In particular,
four groups – each of them not being aware of the work of the others – reached
approximately the same negative conclusion: in the Cold Big Bang scenario,
Nucleosynthesis does not work properly, because the formation of hydrogen is
strongly suppressed with respect to that of heavier elements. But this conclusion
is at odds with observations: using spectrometry, astronomers know that there
is a lot of hydrogen in stars and clouds of gas. The groups of the Russo-
American Gamow in the 1940’s, of the Russian Zel’dovitch (1964), of the British

39
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Hoyle and Taylor (1964), and of Peebles in Princeton (1965) all reached this
conclusion. They also proposed a possible way to reconcile Nucleosynthesis
with observations. If one assumes that during Nucleosynthesis, the dominant
energy density is that of photons, the expansion is driven by ρR ∝ a−4, and
the rate of expansion is different. This affects the kinematics of the nuclear
reactions in such way that enough hydrogen can remain.

In that case, the universe would be described by a Hot Big Bang scenario,
in which the radiation density dominated at early time. Before Nucleosynthesis
and recombination, the mean free path of the photons was very small, because
they were continuously interacting – first, with electrons and nucleons, and
then, with electrons and nuclei. So, their motion could be compared with the
Brownian motion in a gas of particles: they formed what is called a “black–
body”. In any black–body, the many interactions maintain the photons in
thermal equilibrium, and their spectrum (i.e., the number density of photons as
a function of wavelength) obeys to a law found by Planck in the 1890’s. Any
“Planck spectrum” is associated with a given temperature.

Following the Hot Big Bang scenario, after recombination, the photons did
not see any more charged electrons and nuclei, but only neutral atoms. So, they
stopped interacting significantly with matter. Their mean free path became in-
finite, and they simply traveled along geodesics – excepted a very small fraction
of them which interacted accidentally with atoms, but since matter got diluted,
this phenomenon remained subdominant. So, essentially, the photons traveled
freely from recombination until now, keeping the same energy spectrum as they
had before, i.e., a Planck spectrum, but with a temperature that decreased with
the expansion. This is an effect of General Relativity: the wavelength of an in-
dividual photon is proportional to the scale factor; so the shape of the Planck
spectrum is conserved, but the whole spectrum is shifted in wavelength. The
temperature of a black–body is related to the energy of an average photon with
average wavelength: T ∼<E>∼ h̄c/ <λ>. So, the temperature decreases like
1/ <λ>, i.e., like a−1(t).

The physicists that we mentioned above noticed that these photons could
still be observable today, in the form of a homogeneous background radiation
with a Planck spectrum. Following their calculations – based on Nucleosynthesis
– the present temperature of this cosmological black–body had to be around a
few Kelvin degrees. This would correspond to typical wavelengths of the order
of one millimeter, like microwaves.

These ideas concerning the Hot Big Bang scenario remained completely un-
known, excepted from a small number of theorists.

In 1964, two American radio–astronomers, A. Penzias and R. Wilson, de-
cided to use a radio antenna of unprecedented sensitivity – built initially for
telecommunications – in order to make some radio observations of the Milky
Way. They discovered a background signal, of equal intensity in all directions,
that they attributed to instrumental noise. However, all their attempts to elim-
inate this noise failed.

By chance, it happened that Penzias phoned to a friend at MIT, Bernard
Burke, for some unrelated reason. Luckily, Burke asked about the progresses
of the experiment. But Burke had recently spoken with one of his colleagues,
Ken Turner, who was just back from a visit in Princeton, during which he had
followed a seminar by Peebles about Nucleosynthesis and possible relic radiation.
Through this series of coincidences, Burke could put Penzias in contact with
the Princeton group. After various checks, it became clear that Penzias and
Wilson had made the first measurement of a homogeneous radiation with a
Planck spectrum and a temperature close to 3 Kelvins: the Cosmic Microwave
Background (CMB). Today, the CMB temperature has been measured with



3.2. RELATIVISTIC QUANTUMTHERMODYNAMICS IN THE FLRWUNIVERSE41

−3

a−4

a

a

H
2

Oγ

equality

nucleosynthesis
decoupling

a now

Figure 3.1: On the top, evolution of the square of the Hubble parameter as
a function of the scale factor in the Hot Big Bang scenario. We see the two
stages of radiation and matter domination. On the bottom, an idealization of a
typical photon trajectory. Before decoupling, the mean free path is very small
due to the many interactions with baryons and electrons. After decoupling, the
universe becomes transparent, and the photon travels in straight line, indifferent
to the surrounding distribution of electrically neutral matter.

great precision: T0 = 2.726 K.
This fantastic observation was a very strong evidence in favor of the Hot Big

Bang scenario. It was also the first time that a cosmological model was checked
experimentally. So, after this discovery, more and more physicists realized that
reconstructing the detailed history of the universe was not purely science fiction,
and started to work in the field.

The CMB can be seen in our everyday life: fortunately, it is not as powerful
as a microwave oven, but when we look at the background noise on the screen
of a TV set, one fourth of the power comes from the CMB!

3.2 Relativistic quantum thermodynamics in the
FLRW universe

We recall that we are using units such that c = h̄ = kB = 1.

3.2.1 Momentum

Individual free-falling particles in the FLRW universe follow trajectories in
space-time parametrised by a function xµ(λ), where λ is a parameter monoton-
ically increasing along the trajectory, and xµ(λ) satisfies the geodesic equation:

d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0 . (3.1)
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The energy-momentum 4-vector Pµ is defined as Pµ = mdxµ

dλ , where λ is nor-
malised in such a way that the energy-momentum vector satisfies everywhere
the on-shell condition:

gµνP
µP ν = −m2 , (3.2)

where m is the particle mass (zero for a photon). The geodesic equation can
be used to show that P i has a non-trivial evolution with time in the FLRW
universe. Indeed we can write

d

dλ

{
dxi

dλ

}
+ Γiµν

dxµ

dλ

dxν

dλ
= 0 . (3.3)

After multiplying by m2, this becomes

m
dP i

dλ
+ ΓiµνP

µP ν = 0 . (3.4)

We use the fact that with the FLRW metric, Γi00 = Γijk = 0, while Γi0j = Γij0 =
ȧ
a , where ȧ = da

dt and t is proper time. So

m
dP i

dλ
+ 2

ȧ

a
P 0P i = 0 . (3.5)

We can write this relation as

m
dt

dλ

dP i

dt
+ 2

ȧ

a
P 0P i = 0 (3.6)

However m dt
dλ = mdx0

dλ = P 0. So P 0 can be simplified for the equation, and we
are left with

dP i

dt
+ 2

ȧ

a
P i = 0 . (3.7)

Finally, this can be written as

dP i

P i
= −2

da

a
, (3.8)

which shows that P i scales like a−2 when the universe expands.
In special relativity, we would interpret P 0 as the energy and P i as the

physical momentum of the particle. In the FLRW universe, the latter is not
correct, because P i has been defined with respect to the comoving coordinates
xi rather than physical distances. In reality, one could show that the physical
energy and physical momentum measured by comoving observers are

E = P 0 , pi = aP i . (3.9)

We then learn that in the FLRW universe:

• The physical momentum scales like a−1: in particular, its modulus p =√
δijpipj scales like a−1, or in other words (ap) is constant.

• The on-shell condition gives:

−(P 0)2 + a2δijP
iP j = −m2 , (3.10)

i.e.
−E2 + p2 = −m2 . (3.11)

We conclude that the energy reads E =
√
m2 + p2, and is either constant

for non-relativistic particles (m2 � p2), or redshifted like a−1 for ultra-
relativistic particles (m2 � p2): this is a very intuitive result already used
in the previous chapter, in section 2.3.2.
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3.2.2 Phase-space distribution

Let us assume that the cosmological fluids is formed of many different species
X (which can be either interacting with other species or free-streaming), each
described by a phase-space distribution function fX(xµ, P ν). The number of
arguments can be reduced in the FLRW universe by noticing that:

• Homogeneity implies that fX should be the same everywhere and should
not depend on xi.

• Isotropy implies that fX should not depend on the direction of the spatial
part of the energy-momentum vector, P i, or equivalently, it should not
depend on the direction of the physical momentum pi. However it could
depend on the modulus p.

• P 0 is not an additional independent argument, since P 0 = E =
√
m2
X + p2.

Hence the phase-space distribution can be written as a function of time and p
only1: fX(t, p). The number density, energy density and pressure of each species
read:

nX(t) =
gX

(2π)3

∫
d3p fX(t, p) , (3.12)

ρX(t) =
gX

(2π)3

∫
d3p EX fX(t, p) , (3.13)

PX(t) =
gX

(2π)3

∫
d3p

p2

3E
fX(t, p) , (3.14)

where gX is the number of quantum degrees of freedom (spin or helicity states)
of the considered species (e.g. gX = 2 for photons γ, electrons e−, positrons e+,
protons p, anti-protons p̄, neutrons n, anti-neutrons n̄, or gX = 1 for neutrinos
νi and anti-neutrons ν̄X where X is one of e, µ or τ).

Interactions can be represented by a set of reactions 1+2↔ 3+4 (for elastic
scattering, 1 = 3 and 2 = 4). In general the evolution of each species due to the
above reaction is represented by a Boltzmann equation of the type:

dfX
dt

= F [f1, f2, f3, f4] (3.15)

where the right-hand side, which is quite complicated to write in the general
case, is a function of the distribution of each species involved in the reaction.

3.2.3 Kinetic (or thermal) equilibrium

If two species X and Y have frequent interactions (like elastic scattering X +
Y −→ X + Y ), they exchange momentum in a random way and reach a kinetic
equilibrium called “thermal equilibrium”. Many species can be in thermal equi-
librium, forming a so-called “thermal bath” or “thermal plasma”. In thermal
equilibrium, the distributions of each species depend on a common parameter,
the temperature T . However the distributions fX are not all equal to each other.
They depend on:

• the mass mX of each species (the mass appears in the energy of each
particle, EX =

√
m2
X + p2) ;

1equivalently, we could choose to write it as a function of time and E only: this is just a
matter of convention, and in some books you would often find fX(t, E) instead of fX(t, p).
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• an additional parameter µX , the “chemical potential” of the species, which
encodes the effect of the balance between the many reactions (inelastic
scatterings) involved in the plasma;

• at the quantum level, the fact that each species should obey to the Bose-
Einstein statistics for bosons (e.g. photons), or to the Fermi-Dirac statis-
tics for fermions (in this chapter, apart from photons, we will only consider
fermions).

Hence, a plasma of N species in thermal equilibrium with known masses mX

and known statistics (fermion or boson) can be entirely described in terms of a
maximum of N + 1 free parameter (T, µ1, ...µN ), which values can be inferred
from considerations e.g. on energy conservation, quantum number conservation,
and on the the kinetic of the various reactions involved. Thermal distributions
read

fX =


1

exp[
EX−µX

T ]+1
(Fermi-Dirac) ,

1

exp[
EX−µX

T ]−1
(Bose-Einstein) .

(3.16)

The probability of interaction between individual particles depends on a cross-
section σ and on their relative velocity v. In thermal equilibrium, the interaction
between two species X and Y is characterized by a “thermally averaged cross-
section – velocity product” 〈σv〉. The interaction rate (or scattering rate) of X is
given by ΓX = nY 〈σv〉, that of Y by ΓY = nX〈σv〉. A detailed study would show
that the scattering is efficient enough for maintaining X in thermal equilibrium
with Y provided that the scattering rate ΓX is larger than the inverse of the
characteristic time set by the universe expansion: namely, ΓX > H. Intuitively,
when ΓX < H, the cross-section is so low or the species Y is so diluted that
the chance for X to scatter over Y within a time comparable to the age of the
universe becomes negligible. When all possible scattering reactions which could
maintain X in thermal equilibrium have ΓX < H, the species X decouples from
thermal equilibrium. In this case, assuming that the particles are stable and
non-interacting, they can only free-stream with a frozen distribution (i.e., the
distribution remains identical to the one at last scattering, apart from the effect
of the universe expansion: p ∝ a).

Let us review a few basic properties of thermal equilibrium which will be
useful in the following sections.

• Density of relativistic particles with negligible chemical potential. Let us
assume for simplicity that |µX | � T . In this case,

fX =
1

exp[
√
m2
X + p2/T ]± 1

. (3.17)

From eq. (3.12), we see that in general the particles contributing mostly to
the number density are those for which p2fX(p) is maximum. If T � mX ,
the function p2fX(p) peaks at a value of p of the same order of magnitude
as T , and hence for a huge majority of particles p� mX . This corresponds
to a gas of relativistic particles. The number density, energy density and
pressure can be computed by integrating over the above distribution in
the limit mX −→ 0. The result is found to be:

nX =
ζ(3)

π2
gXT

3

(
×3

4
for fermions

)
, (3.18)

ρX =
π2

30
gXT

4

(
×7

8
for fermions

)
, (3.19)

PX =
1

3
ρX , (3.20)
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where ζ(x) is the Riemann zeta function (ζ(3) ' 1.20206...), and the
extra factors for fermions come from the +1 term instead of −1 in the
denominator of fX . Note that the usual equation of state of a relativistic
gas, p =

∑
X pX =

∑
X ρX/3 = ρ/3, is recovered here. We conclude that

boson and fermions in thermal equilibrium with each other and such that
mX � T and |µX | � T share roughly the same number/energy density,
apart from possible factors of order one.

• Density of non-relativistic particles. In the limit mX � T , the function
p2fX(p) peaks in between T and mX , and most particles have p � mX :
hence this limits describes a gas of non-relativistic particles. Then, a
detailed integration shows that for both fermions and bosons

nX = gX

(
mXT

2π

)3/2

exp[− (mX − µX)

T
] , (3.21)

ρX = mXnX , (3.22)

PX = TnX � ρX . (3.23)

Let us compare the number density of these particles with that of rela-
tivistic ones still in thermal equilibrium with them:

nNR
X

nR
Y

= e
µX
T

[
gX
gY

√
π

2
√

2ζ(3)

](mX

T

)3/2

e−
mX
T . (3.24)

The factor between brackets is of order one. The part after the brackets
is much smaller than one since we assumed mX � T . Hence, unless
the chemical potential is huge (µX � mX � T , a case that will never
occur in the realistic situations considered later), the number density of
non-relativistic species in thermal equilibrium is exponentially suppressed
with respect to that of relativistic ones. The total number density in the
thermal plasma is dominated by relativistic components.

3.2.4 Chemical equilibrium

Let’s consider an inelastic scattering reaction of the type 1+2←→ 3+4. When
this reaction is frequent enough, the relative number density of particles cannot
be arbitrary, it must obey to the chemical equilibrium relation:

µ1 + µ2 = µ3 + µ4 . (3.25)

When the reaction is not frequent, it is unable to maintain chemical equilib-
rium, and the kinetic of each particle production/annihilation must be followed
using the Boltzmann equation. However, these particules can still be in thermal
equilibrium (for instance, due to e.g. elastic scattering with photons). If all four
species are still in thermal equilibrium, the Boltzmann equation describing e.g.
the evolution of n1 due to the above reaction takes a much simpler form than
in the general case:

ṅ1 + 3Hn1 = n1n2〈σv〉
[
exp

(
−µ1 − µ2 + µ3 + µ4

T

)
− 1

]
. (3.26)

Here, we made two assumptions (apart for thermal equilibrium). First, we
assumed that the cross section 〈σv〉 is the same for the reactions 1 + 2 −→ 3 + 4
and 3 + 4 −→ 1 + 2. Otherwise, the right-hand side would split in two terms
for creation and annihilation. However, for the realistic cases considered later,
it is sufficient to consider a symmetric cross section. Second, we assumed that
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1 + 2 ←→ 3 + 4 is the only reaction leading to the creation or annihilation of
type 1 particles. If there are other processes involved, the right-hand side should
contain a sum over all possible creation and decay channels.

Note that the factor n2〈σv〉 in the right-hand side is precisely the scattering
rate Γ1 for the scattering of type 1 particles. Hence, the second term on the
left-hand side is of the order of Hn1, while the right-hand side is of the order
of n1Γ1 times the brackets. We see that if Γ1 � H, the term involving H
can be neglected; in this regime, the differential equation forces n1 to reach an
equilibrium value for which the brackets vanish, i.e. for which µ1 +µ2 = µ3 +µ4:
chemical equilibirum will be maintained at any time. In the other limit, when
Γ1 � H, the right-hand side is negligible, and there is no reason for the relation
µ1 + µ2 = µ3 + µ4 to be maintained; instead, ṅ1 = −3Hn1, which is equivalent
to n1 ∝ a−3: this simply corresponds to particle number conservation for a
decoupled species. The intermediate regime can only be followed by integrating
the above Boltzmann equation.

3.2.5 Conservation of quantum numbers

If the number of particles of a given type X was conserved in any comoving
volume, we would have nXa

3 =constant. This is usually not the case since in
general, the particles X can be destroyed or created by various inelastic scat-
terings. So, conservation laws do not apply to the number density of individual
particles, but to that of quantum numbers.

Let us consider for instance the conservation of electric charge. We can define
n+ as the sum over the number density of all particles with positive charge,
weighted by the value of their charge; same for n− (weighted by the absolute
value of the charge so that n− > 0). The total density of electric charge in the
universe is then simply nQ ≡ n+−n−. Electric charge is a conserved number, so
the charge in any comoving volume must be constant. Hence nQa

3 is constant.
The same holds for other quantities such as baryon number (nBa

3 =constant),
lepton number (nLa

3 =constant), etc. (except at very early times for which
baryon or lepton number conservation can be violated in special circumstances,
as we shall see later).

However, in the case of the electric charge, we have an even stronger con-
straint: since the electric charge is associated with Coulomb forces and the
universe expansion is only governed by gravitational forces, the universe must
be globally neutral: hence nQ = 0 and n+ = n−.

Note that each conserved quantum number is usually associated with a non-
zero chemical potential. When a particle X carries no conserved charge, nothing
prevents reactions of the type nX → mX with n 6= m. This is the case for
photons. For instance, as long as the universe contains electrons and positrons,
the two reactions

3γ ←→ e+ + e− ←→ 2γ (3.27)

are in chemical equilibrium, hence 2µγ = 3µγ and µγ = 0. In addition, the
above reactions tell us that electrons and positrons (which carry electric charges
±1 and lepton numbers ±1) have opposite chemical potentials, µe+ = −µe− .
It is not possible to find a reaction that would lead to the conclusion that
µe+ = µe− = 0 without violating charge or lepton number conservation. A
species carrying a conserved charge can have a zero chemical potential, but only
if we invoke external constraints on top of chemical equilibrium considerations.
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3.2.6 Entropy conservation in the thermal bath

We just said that there is no reason for conserving the total number density of
particles in a given comoving volume. However, it is possible to show that the
total entropy (i.e. the number of possible states) in any comoving volume is
conserved, and that the entropy density of a thermal plasma reads

s =
ρ+ P

T
(3.28)

where ρ and P are the total density and pressure of species in thermal equi-
librium. The proofs of these results will be derived in the exercise sessions.
Let us consider a thermal bath composed of a number of relativistic and non-
relativistic species, and let us assume further that the density of non-relativistic
particles is negligible with respect to that of relativistic ones (this assumption
holds throughout the radiation dominated era in the early universe). The total
density and pressure are then equal to

ρtot =
π2

30
g∗T

4 , Ptot =
1

3
ρtot , (3.29)

where we have introduced the effective number of bosonic relativistic degrees of
freedom g∗ defined through

g∗ =
∑

rel.bosons

gX +
7

8

∑
rel.fermions

gX . (3.30)

The entropy density is then

s =
4

3

π2

30
g∗T

3 , (3.31)

and its conservation implies g∗T
3a3 =constant. We see that as long as g∗

is constant, T ∝ a−1. However, when g∗ varies (which can happen e.g. if
one species becomes non-relativistic at some point), the temperature varies like

T ∝ g−1/3
∗ a−1.

Note that entropy conservation is really different from number density con-
servation. For instance, in the above example, the number density reads

ntot =
ζ(3)

π2

[ ∑
rel.bosons

gX +
3

4

∑
rel.fermions

gX

]
T 3 . (3.32)

The term between brackets differs from g∗ due to the factor 7/8. Hence, when
g∗ varies, the quantity ntota

3 is not constant, since the entropy is not equivalent
to the number density!

3.3 The Thermal history of the universe

3.3.1 Early stages

The earliest stages in the evolution of the universe are still partially unknown
and subject to investigation, while the latest stages are very well modelled and
constrained by observations. In summary, the epoch during which the energy

scale ρ
1/4
tot of the universe was smaller than 100 MeV is rather well understood,

while early stages are still quite uncertain. In this subsection, we will provide a
very brief overview of what could have happened above 100 MeV. In the next
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subsections, we will describe in more details the main events taking place below
100 MeV.

Following the most conventional picture, gravity became a classical theory
(with well–defined time and space dimensions) at a time called the Planck time2:
t ∼ 10−36s, ρ ∼ M4

P ∼ (1018GeV)4 (where the Planck mass is defined by
MP = G−1/2: the Friedmann equation can also be written as 3M2

PH
2 = 8πρ,

and the Planck time corresponds to H = MP , i.e. to a Hubble radius equal
to the Planck length RH = 1/MP = λP ; all these relations are written as
usual for c = h̄ = kB = 1 units). Later, there was most probably a stage
of accelerated expansion called inflation. Current observations provide some
indirect, but precise information on inflation, which is quite extraordinary since
this stage took place at extremely high energy. Inflation might be related to the
spontaneous symmetry breaking of the GUT (Grand Unified Theory) symmetry
around t ∼ 10−32s, ρ ∼ (1015 to 1016GeV)4. However, it could also take place
at much lower energy. Besides, we are not even sure that Grand Unification
ever occurred. We will describe the motivations and predictions of inflation in
the last chapter.

After inflation, during a stage called reheating, the scalar field responsible
for inflation decayed into the particles of the standard model (three families of
quarks, anti-quarks, leptons and anti-leptons; Higgs boson(s); gauge bosons),
and possibly also some particles belonging to extensions of the standard model,
like maybe supersymmetric particles, although recent LHC results bring no
evidence for such an extension, at least until now. It is likely that all these
particles reached thermal equilibrium after some time. At such high energy,
most (if not all) particles were ultra-relativistic (T > mX), and the total energy
and pressure were given by eq. (3.29). The end of reheating marks the beginning
of the radiation dominated era assumed by Gamow, Peebles and others. Note
that during this era, T ∝ a−1 and ρ ∝ a−4 in good approximation, although
these scaling laws are slightly violated each time that g∗ varies (this occurs
from time to time e.g. when some particles become non-relativistic). Around
t ∼ 10−6s, ρ ∼ (100 GeV)4, the EW (Electro Weak) symmetry is spontaneously
broken and the quarks acquire a mass through the Higgs mechanism. Later, at
t ∼ 10−4s, ρ ∼ (100 MeV)4, the QCD (Quantum Chromo Dynamics) transition
forces quarks to get confined into hadrons: baryons and mesons.

All these stages are quite complicated and extremely interesting to investi-
gate in details (here we will not address them). Let us mention that a particu-
larly fascinating and important issue is the evolution of the baryon and lepton
number.

Let us focus first on the baryon number. Before reheating, there is no baryon
number. Hence, if the baryon number is always conserved, each time that
a particle is created during reheating with a given baryon number, its anti-
particle with opposite baryon number will also be created. The pairs of particle-
antiparticles will not annihilate in the relativistic regime. For simplicity, let us
do as if there was only one type of particle with a baryon number, say b with
baryon number B = 1 and its antiparticle b̄ with B = −1. These particles could
in principle annihilate through e.g.

b+ b̄↔ nγ (3.33)

(n being the number of produced photons). Note that a particle and its anti-
particle should share the same mass mb. Intuitively, as long as T � mb, the
photons carry enough energy for creating pairs of b and b̄, so they will coexist in
the thermal plasma: annihilation and creation compensate each other. However,

2By convention, the origin of time is chosen by extrapolating the scale-factor to a(0) = 0.
Of course, this is only a convention, it has no physical meaning.
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when T < mb, the photons do not carry enough energy for creating pairs, and
only annihilation can occur: so, b and b̄ annihilate. If we assume that the baryon
number is always conserved, then the annihilation will be total and we will be
left with no baryons at all today. This is not the case since the nuclei of atoms
are made of protons and neutrons. Hence, the baryon number conservation has
to be weakly violated at some point between reheating and T ∼ mb. When the
violation occurs, an excess of particles with positive B can be created. This is
called baryogenesis. When T ∼ mb, all baryons annihilate with antibaryons,
excepted the few ones in excess, which remain around until today.

Let us give a very simplified mathematical description of this phenomenon:
after baryogenesis, the universe contains relativistic baryons and anti-baryons
in thermal and kinetic equilibrium. The reaction

b+ b̄↔ nγ (3.34)

with different possible values of n guaranties that µγ = 0 and µb = −µb̄. If
µb = 0, then nb is exactly equal to nb̄. The outcome of baryogenesis should be
a small excess of baryons, hence µb > 0. The conserved baryon number nBa

3 is
non-zero and obtained from

nB = nb − nb̄ =
gb

(2π)3

∫
d3p

[
1

exp(E−µbT ) + 1
− 1

exp(E+µb
T ) + 1

]
. (3.35)

In the relativistic limit E = p this gives

nB =
gbT

3

6π2

[
π2
(µb
T

)
+
(µb
T

)3
]
, (3.36)

which is positive for µb > 0. As long as Ta =constant (i.e. as long as g∗ is
constant in the thermal bath), the conservation of nBa

3 implies that µb/T is
also constant. The baryon asymmetry can be parametrized by

nB
nb + nb̄

' nB/
[
2× 3

4

ζ(3)

π2
gbT

3

]
∼
[
π2
(µb
T

)
+
(µb
T

)3
]

(3.37)

but this is not a conserved number. Usually, the asymmetry is parameterized
by nB/s, which is really a conserved number since both the baryon number
nBa

3 and entropy sa3 are conserved. We will see later that in order to obtain
the correct baryon density today, we must assume that nB/s is of the order of
10−10.

Note that when the universe is filled with a thermal plasma, s is of the order
of g∗T

3, while nγ is of the order of gγT
3 with gγ = 2. So, instead of nB/s, we

will often use the ratio nB/nγ , although strictly speaking the second number is
not conserved and differs from the first one by a factor of the order of g∗ (which
can vary between ∼ 3 and ∼ 10 during the period that we will study in the next
sections). In the recent universe we will see that

ηb ≡
nB
nγ
∼ 5× 10−10 . (3.38)

When T ∼ mB , the number density of both nb and nb̄ drops down very quickly
due to the exp(−mb/T ) factor. Intuitively, this means that a smaller and smaller
fraction of photons have enough energy for producing b+b̄ pairs. The assumption
of thermal and kinetic equilibrium and the conservation of entropy and baryon
number provide enough equations for following µb(T ) and T (a) until nb̄ becomes
really negligible. We don’t even need to do that: it is enough to know that
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when nb̄ = 0, baryon number conservation simply implies that nba
3 = nBa

3 is
constant. Note that at that time

nb = gb

(
mbT

2π

)3/2

e−
(mb−µb)

T , (3.39)

so the quantity µb/T now varies with time, in order to maintain a constant nba
3.

This description of the matter-antimatter asymmetry in the early universe
was quite simplistic with respect to reality. Actually, baryogenesis and baryon-
antibaryon annihilation are two active topics of research. Baryogenesis could
be associated with B-violating processes during GUT symmetry breaking or
EW symmetry breaking, or could also be induced by leptogenesis, for which a
similar discussion can hold. The baryon-antibaryon annihilation is expected to
take place roughly around T ∼ 1000 MeV, which is the order of magnitude of
the proton mass; it is intimately related to the quark-hadron transition.

3.3.2 Content of the universe around T ∼10 MeV

In the next sections, we will describe a list of phenomena induced by the fact
that the weak interactions become inefficient around 1 MeV, and also that the
MeV is the order of magnitude of binding energies in light nuclei. Before these
sections, we should look at initial conditions before T ∼MeV.

Let us list the species present after the quark-hadron transition. A species
can be present at a given time if it satisfies one of two conditions:

• either it is relativistic: m � T . In this case the particle can be easily
produced by other species in the thermal bath (annihilation and creation
compensate each other).

• or it is stable thanks to the conservation of a quantum number. In this
case, the particle may have m � T , but cannot decay with violating the
conservation of this number. Typically, the particles in the category are
the lightest ones carrying a given quantum number. For instance, the
proton is the lightest baryon.

Generally speaking, hadrons consist of baryons, mesons and their antipar-
ticles. Mesons carry zero baryon number and quickly annihilate. Antibaryons
annihilate well before T ∼ 10MeV, as described above. Baryons made of heavy
quarks are unstable at the temperature considered here since they can decay
into lighter baryons (protons and neutrons). Protons are perfectly stable in
the limit of no B violation since they are the lightest baryons. Neutrons can
decay into protons through beta decay (n −→ p+ e− + ν̄e) but it is possible to
show that at the temperature considered here, the inverse process is still effi-
cient (electrons and neutrons carry enough energy for converting a proton into a
neutron: this only requires mn−mp = 1.203 MeV). So, around ∼10 MeV, both
protons and neutrons are present. They are still maintained in thermal and ki-
netic equilibrium by weak and electromagnetic interactions. They are of course
both non-relativistic since mn ∼ mp ∼ GeV. They have approximately the same
density nn = np, as will be shown explicitly in the section on Nucleosynthesis.

In the lepton sector, µ, µ̄, τ and τ̄ are so heavy that they decay into electrons
and positrons. The mass of electrons and positrons is close to 0.5 MeV, so they
are still relativistic at that time. Electric neutrality implies ne− − ne+ = np.
Does this imply a large asymmetry for electrons versus positrons? Remember
that nB/s is conserved and of the order of 10−10. At the temperature considered
here, we can consider that nB = np + nn ' 2np and that s ∼ nγ ∼ ne− modulo
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factors of order at most ten. Hence, speaking only of orders of magnitude,

ne− − ne+
ne− + ne+

∼ ne− − ne+
s

∼ nB
s
∼ 10−10 . (3.40)

We see that electric neutrality implies that the electron-positron asymmetry is
as tiny as the initial baryon asymmetry.

Besides, the universe contains all six neutrinos: νe, νµ, ντ and their antipar-
ticles, maintain in thermal and kinetic equilibrium by weak interactions. Their
mass is at most of the order of eV, so they have no reason to annihilate, and
they contribute to the thermal plasma as ultra-relativistic components. They
could in principle carry some asymmetry associated to chemical potentials µe,
µµ and µτ (each antineutrino would then have an opposite chemical potential
due to the chemical equilibrium of the reactions νe + ν̄e ←→ e− + e+ ←→ γ).
Due to the large mixing angles in the neutrino mass matrix, the three potentials
should share a unique value at this epoch. This issue is still a topic of research,
but since such an asymmetry is difficult to motivate and has not been observed
so far, we will assume throughout this course that neutrino chemical potentials
are null, and hence that at the time considered here all six neutrino species
share exactly the same number density.

Finally, the universe should contain photons. All other particles are expected
to have decayed by that time, excepted one or more stable “dark matter particle”
that will be discussed in Chapter 4. In summary, around T ∼ 10 MeV, the
universe should contain: p, n, e−, e+, six neutrino species, γ and possibly dark
matter particles. The latter, if they exist, are expect to be non-relativistic at
that time. So the number of relativistic degrees of freedom is given by photons,
electrons, positrons and six neutrinos:

g∗(∼ 10MeV) = 2 +
7

8
(2 + 2 + 6) = 10.75 . (3.41)

3.3.3 Neutrino decoupling

Weak interactions maintain neutrinos in thermal equilibrium through elastic
and inelastic interactions like e.g.

νe + e− ←→ νe + e− (3.42)

νe + ν̄e ←→ νi + ν̄i (i = µ or τ)

νe + νi ←→ νe + νi

νe + ν̄i ←→ νe + ν̄i

etc. (3.43)

which are all of the weak interaction type (they involve exchanges of weak bosons
Z0, W±). The thermally averaged cross sections of these reactions are of the
order of 〈σv〉 ∼ G2

FT
2, where GF ∼ 10−5GeV−2 is the Fermi constant (which

characterizes the magnitude of weak interactions). Hence the relevant scattering
rates are of the order of Γ = ne−〈σv〉 ∼ G2

FT
5. Let us compare the evolution

of Γ with that of the Hubble rate H2 = (8πG/3)ρ ∼M−2
P T 4. We find that

Γ

H
∼MPG

2
FT

3 ∼
(

T

1 MeV

)3

. (3.44)

Hence, when the temperature of the plasma drops below T ∼MeV, the neutrinos
leave thermal equilibrium, and their distribution remains frozen, with

fi(p) =
1

exp[p/Tν ] + 1
. (3.45)
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By “frozen”, one means that fi varies only due to the universe expansion, which
imposes a very trivial evolution. Each decoupled particle is free-falling in the
FLRW universe. The geodesic equation shows that for such particles p ∝ a−1

(we already used this result many times for photons). Hence each individual
particle has a momentum redshifting like p(t) = p(tD)a(tD)/a(t) where tD is the
time of decoupling. For particles which decoupled when they were relativistic
(like the neutrinos considered in this section), the distribution fi(p) depends
on p only through the ratio p/Tν . So, saying that all momenta shift like a−1

is strictly equivalent to saying that Tν shifts like a−1. Hence, after neutrino
decoupling and for each of the six species i, the product (Tνa) remains exactly
constant at all times. Besides, as long as they remain relativistic with Tν � mνi ,
they obey:

nνi =
3

4

ζ(3)

π2
T 3
ν ∝ a−3 , (3.46)

ρνi =
7

8

π2

30
giT

4
ν ∝ a−4 , (3.47)

pνi =
1

3
ρνi . (3.48)

Neutrino decoupling is a very smooth process because before decoupling (and
as long as the number of relativistic degrees of freedom g∗ was conserved), we
already had T = Tν ∝ a−1, nνi ∝ a−3, ρνi ∝ a−4 and pνi = ρνi/3. Hence,
from the point of view of the universe expansion, one could say that “nothing
particular happens” when neutrinos decouple. The temperature of neutrinos
and of the thermal bath remain equal, both scaling like a−1. The entropy
density before decoupling reads:

s =
ρ+ p

T

∣∣∣∣
plasma

=
4

3

π2

30
g∗T

3 with g∗ = 2 +
7

8
(2 + 2 + 6) = 10.75 . (3.49)

After decoupling, the entropy receives contribution from the plasma and from
neutrinos. We have not derived the expression of entropy for a decoupled rela-
tivistic species, but it is simple: it reads like the entropy of relativistic species
in equilibrium, with the appropriate value of the temperature:

s =
ρ+ p

T

∣∣∣∣
plasma

+
ρν + pν
Tν

∣∣∣∣
neutrinos

(3.50)

=
4

3

π2

30

(
2 +

7

8
(2 + 2)

)
T 3 +

4

3

π2

30

(
7

8
× 6

)
T 3
ν . (3.51)

Since both T and Tν scale like a−1 around the time of neutrino decoupling,
they remain equal to each other, and the expression of the entropy is absolutely
unchanged.

3.3.4 Positron annihilation

The electron and positron mass is close to 0.5 MeV. Hence, when the tem-
perature of the plasma drops below this value, electrons and positron become
gradually non-relativistic. This is the same situation as the one described pre-
viously for b and b̄: the number density of e− and e+ drops down very quickly
with respect to that of photons, due to the suppression factor exp[−me/T ].
Basically, this means that electrons and positrons annihilate each other with-
out being regenerated, until positrons disappear completely; a small number
of electrons survives, in equal proportion to protons in order to ensure electric
neutrality. After this process, ne− = np ∼ nB ∼ 10−10nγ .
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It is particularly interesting to follow the evolution of entropy during electron-
positron annihilation. Intuitively, entropy conservation implies that when elec-
trons and positrons annihilate each other, their entropy has to go into other
species, namely: photons, which are the only remaining relativistic species in
the plasma. In other words, the reaction e− + e+ −→ nγ generates an excess
of photons; since photons are in thermal equilibrium, any excess in the number
density must be described in terms of an increase in the product (Ta). Let us
check this explicitly. Before positron annihilation, the expression of entropy is
given by eq. (3.51). After annihilation, it reads:

s =
ρ+ p

T

∣∣∣∣
plasma

+
ρν + pν
Tν

∣∣∣∣
neutrinos

(3.52)

=
4

3

π2

30
(2)T 3 +

4

3

π2

30

(
7

8
× 6

)
T 3
ν . (3.53)

Note that the total entropy in a comoving volume sa3 is conserved, but the sep-
arate entropy of neutrinos is also conserved since they are decoupled and (Tνa)
is exactly constant. This implies that splasmaa

3 is also conserved separately.
Hence:

11

2
(Ta)3

before = 2(Ta)3
after . (3.54)

We conclude that the temperature of the plasma does not scale like a−1 during
electron positron annihilation: this is a typical example in which it is rescaled

according to g
−1/3
∗ . In fact, Ta increases in order to compensate the loss of the

electron and positron degrees of freedom. But the most interesting outcome of
this is that the temperature of photons and neutrinos after annihilation differs
by:

(Tνa)after

(Ta)after
=

(Tνa)before

(11/4)1/3(Ta)before
=

(
4

11

)1/3

. (3.55)

After positron annihilation, the photons are the only remaining species in ther-
mal equilibrium, hence g∗ = 2 and (Ta) is exactly constant. Finally, we will
see that photons decouple around T ∼ 0.3 eV. Like for neutrinos, the distribu-
tion of photons remains frozen after decoupling, with T (t) = T (tD)a(tD)/a(t)
until today. We conclude that between T ∼ 0.5 MeV and today, the relation
Tν = (4/11)1/3T holds at any time, with the photon temperature given by
T = T0(a0/a). Here, T0 is the CMB temperature measured today, T0 = 2.726K.
So Tν0 = 1.946K. Knowing the photon and neutrino temperature today, we can
infer their number densities:

n0
γ =

ζ(3)

π2
× 2 T 3

0 = 137 cm−3 , (3.56)

n0
ν =

ζ(3)

π2
× 3

4
× 6× 4

11
T 3

0 = 112 cm−3 , (3.57)

(the second number being the total density summed over the six neutrinos).

3.3.5 Nucleosynthesis

A nucleus X containing Z protons can have various isotopes AX of mass number
A (hence containing A−Z neutrons). The following reactions can increase Z by
one unit, starting from a simple proton (i.e. ionized hydrogen nucleus H+ = p;
in the following we will omit to write the charge of the various ions):

p+ n −→ D + γ (3.58)

D +D −→ 3He+ n (3.59)
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Figure 3.2: Average binding energy per nucleon B/A as a function of A.

3He+D −→ 4He+ p (3.60)

... (3.61)

In order to know whether these reactions are favored or not from the point of
view of energetics, we should know the binding energy B of each element. We
recall that the binding energy is the minimal amount of energy which must be
furnished in order to break a nucleus X in Z protons and A−Z neutrons. Hence
the rest energy of X reads:

E0(X) = mX = Zmp + (A− Z)mn −B . (3.62)

For instance, the binding energy of deuterium is BD = 2.22 MeV, since mp =
938.27 MeV,mn = 939.57 MeV,mp+mn = 1877.84 MeV andmD = 1875.62 MeV.
Hence, from a purely energetic point of view, protons and neutrons should com-
bine and form the isotope with the largest possible binding energy per nucleon
B/A: once this isotope exists, any nuclear reaction destroying it would cost
energy. Figure 3.2 shows the average binding energy per nucleon B/A as a
function of A. Starting from zero for hydrogen 1H (p), the curve raises for
deuterium 2H (pn), helium 3He (ppn), tritium 3H (pnn), and reaches a local
maximum for 4He (ppnn). The first isotope with a ratio B/A larger than that
of 4He is 12C. The global maximum is reached at A = 56 for iron 56Fe.

Preliminary overview of Nucleosynthesis. From a purely energetic point of view,
we could expect the following picture. The reaction

D + γ −→ p+ n (3.63)

requires an energy of at least BD = 2.22 MeV. For T > BD, photons carry
enough energy for breaking any deuterium nucleus into pairs p + n. Hence,
protons and neutrons can be significantly converted into deuterium only when
the temperature drops below BD. Once deuterium forms, it is energetically
more favorable to convert it in 3He, and so on and so on, until the universe
contains only heavy elements like iron.

In the above reasoning, we forgot that the kinetic of the various reactions
involved does not depend only on initial and final energies, but also on number
densities and cross sections. In fact, the previous reasoning is more or less
correct in the frame of the Cold Big Bang scenario, which was rejected on this
basis: far from stars, the real universe seems dominated by hydrogen rather than
heavy elements. In the Hot Big Bang scenario, a key feature is that baryons
are considerably suppressed with respect to photons, nB ∼ 10−10nγ . So, our
argument that when T < BD the reaction (3.63) cannot occur is wrong. There
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are so many photons that even if the average photon energy is much less than
TD, but a tiny fraction of them (of order 10−10) have a momentum larger than
BD (which is possible if they are in the high-momentum tail of the Fermi-Dirac
distribution), then the reaction is still very efficient. So, in the Hot Big Bang
scenario, neutrons and protons start forming deuterium at a significantly smaller
temperature than BD. The formation of heavier elements is also suppressed by
consideration on number densities. Once deuterium is formed, most of it is
efficiently converted into 4He as could be expected from energetics, but then
the gap between 4He and 12C is very difficult to cross: it requires a three-body
reaction 3 × 4He −→ 12C. When 4He forms, the temperature is far too low
for the scattering rate of the above reaction to be comparable with H. Hence
the chain will stop at 4He. Let us now check these qualitative expectations
using our knowledge of thermal and chemical equilibrium. The discussion can
be carried out in two steps.

Formation of Deuterium. We first study the reaction of deuterium formation:

n+ p←→ D + γ . (3.64)

The cross-section of this reaction is large enough for ensuring chemical equi-
librium in the temperature range considered here. Hence µD = µn + µp. At
T � GeV, neutrons, protons and deuterium are all non-relativistic with densi-
ties given by eq. (3.21). Hence

nD
npnn

= exp

(
µD − µp − µn

T

)
3

4

(
2πmD

mpmnT

)3/2

exp

(
mp +mn −mD

T

)
,

(3.65)
where we used the number of spin states: g = 2 for p and n, g = 3 for deuterium.
The argument of the first exponential cancels because of chemical equilibrium.
The argument of the second one involves the binding energy BD of deuterium:

nD
npnn

=
3

4

(
2πmD

mpmnT

)3/2

exp

(
BD
T

)
. (3.66)

We will now use this equation for getting a rough estimate of the order of
magnitude of the deuterium density to baryon number density ratio. We know
that roughly, np ∼ nn ∼ nB ∼ 10−10nγ ∼ 10−10T 3. Hence we obtain

nD
nB

∼ 10−10

(
T

mp

)3/2

exp

(
BD
T

)
∼ 10−10

(
T

0.94 GeV

)3/2

exp

(
2.22 MeV

T

)
. (3.67)

As long as T > BD, it is clear that the ratio remains tiny. As expected, there
is no significant deuterium abundance above that scale; all baryons are in the
form of neutrons and protons. The first terms can be compensated only if the
argument of the exponential is large enough. A quick estimate shows that for
T ∼ 0.06 MeV, the above ratio reaches the order of one. A more careful estimate
shows that the deuterium abundance becomes sizable around 0.07 MeV. We will
retain 0.07 MeV as the temperature of Nucleosynthesis.

Once deuterium forms, one can show that it is efficiently converted to 3He
and 4He, since the scattering rate of the relevant reactions exceeds the Hubble
rate, and 4He is the most stable configuration. However, at T ∼ 0.07 MeV,
the scattering rate of the three-body reaction 3 × 4He −→ 12C is consider-
ably suppressed and the chain stops. We conclude that below T ∼ 0.07 MeV,
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nucleons combine into 4He, which is formed of two protons and two neutrons.
However, protons and neutrons are not necessarily in exactly equal proportions
before this temperature is reached. Hence, together with 4He, there might be
a relic density of protons or neutrons. We see that it is crucial to compute the
neutron over proton ratio for T ≥ 0.07 MeV.

Neutron versus proton density above T ∼ 0.07 MeV. The balance between neu-
trons and protons depends essentially on the reaction (called β-decay):

p+ e− ←→ n+ νe . (3.68)

At high energy (T > MeV), this reaction is in chemical equilibrium, with µp +
µe = µn + µνe . The chemical potential of neutrinos is zero in the simplest
cosmological model considered in this course. The one of electrons is non-zero,
but before electron-positron annihilation the asymmetry between electrons and
positrons is so small (µe/T ∼ 10−10) that we can work in the approximation
µe ' 0. Hence:

1 = exp

(
µp + µe − µn − µνe

T

)
' exp

(
µp − µn

T

)
=

np
nn

(
mn

mp

)3/2

exp

(
mp −mn

T

)
. (3.69)

(for the last equality, we used eq. (3.21) for the number density of non-relativistic
species). The difference between the neutron and proton mass is Q ≡ mn−mp =
1.203 MeV. Hence, for T � 1 MeV, the neutron to proton ratio is given by:

nn
np

∣∣∣∣
T�1 MeV

= (mn/mp)
3/2 = 1.002 , (3.70)

i.e. the density of neutrons and protons is essentially the same. When T ∼
1 MeV, chemical equilibrium would force the neutron to proton ratio to drop
exponentially like exp(−Q/T ). If this was true, at 0.07 MeV there would be es-
sentially no neutron left, and Nucleosynthesis would not happen: the primordial
universe would contain only hydrogen.

However, the above reaction is mediated by weak interactions. Hence, it
becomes quite weak around T ∼MeV, and we are forced to consider its departure
from chemical equilibrium. In fact we will see that the reaction freezes out with
a significant leftover of neutrons. The neutron density obeys to the Boltzmann
equation:

ṅn + 3Hnn = nn[nνe〈σv〉]
{

exp

(
µe + µp − µn − µνe

T

)
− 1

}
. (3.71)

The term between square brackets is the scattering rate Γnp for neutron to
proton conversion, and the exponential can be approximated using eq. (3.69).
Hence

ṅn + 3Hnn = nnΓnp

{
np
nn

(
mn

mp

)3/2

e−Q/T − 1

}
. (3.72)

This equation can be written in terms of a dimensionless variable, the neutron
fraction Xn = nn/(nn + np). We have

nn = Xn(nn + np) = XnnB , np = (1−Xn)nB . (3.73)
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The conservation of the baryon number implies nB ∝ a−3, so

ṅn = ẊnnB − 3HXnnB . (3.74)

Replacing nn and np in eq. (3.72) and dividing by nB , we get

Ẋn = Γnp

[
(1−Xn) e−Q/T −Xn

]
. (3.75)

The dependence of Γnp with respect to T can be computed using nuclear physics.
Still, in order to integrate the equation, we need to know the relation between
time t and temperature T . This relation can be inferred from the Friedmann
equation. In first approximation, T ∝ a−1 (neglecting the effect of the electron-
positron annihilation on Ta) and dT/T = −da/a. So,

dT

dt
= −T da

a dt
= −TH (3.76)

= −
√

8πG

3
ρT 2 (3.77)

= −
√

8π3G

90
g∗T 6 (3.78)

with g∗ = 10.75 before electron-positron annihilation. Hence the reaction reads

dXn

dT
= −

√
90

8π3g∗

MP

T 3
Γnp(T )

[
(1−Xn)e−Q/T −Xn

]
. (3.79)

Knowing Γnp(T ), this equation can be integrated. The result is that around
T ∼ 0.1 MeV, Xn gets close to an asymptotic value of 0.15, corresponding to
the freeze-out of the neutron to proton ratio.

Equation (3.79) is just a first-order approximation. The precise calculation
includes two additional effects: the change in g∗ and Ta due to the electron-
positron annihilation, and the neutron beta-decay (n −→ p + e− + ν̄e) which
should be included in the right-hand side of the Boltzmann equation since it
represents another decay channel. Altogether, these effects lead to a slightly
different neutron to proton ratio at freeze-out, Xn(T < 0.1 MeV) ∼ 0.11, while
at the time of Deuterium creation, nn = 0.124nB and np = 0.876nB . Then,
all available neutrons will combine into deuterium, 3He and finally 4He nuclei,
together with the same number of protons. The final 4He density should be
n4He = 0.062nB , with a leftover of nH = 0.752nB protons. The helium fraction,
usually defined as:

YP ≡
4n4He

nB
, (3.80)

is predicted to be 0.228 at any time after Nucleosynthesis, in every region of the
universe not affected by the ejection of particles from stars (since inside stars,
nuclear reactions can form other elements in very different proportions).

Exact results from a full calculation. The above calculation was rather simplis-
tic. A full simulation of Nucleosynthesis can be performed using numerical codes
(a few Nucleosynthesis codes are even publicly available). Instead of studying
the kinetics of just two reactions, these codes follow of the order of one hundred
possible reactions between neutrons, protons and heavier nuclei (typically, till
12C). The main differences between the outcome of a full simulation and the
results of the above section are:

• when reactions freeze-out, the density ni of other elements than 4He is
nonzero - but still very small: the number density of D and 3He is smaller
than that of 4He by a factor ∼ 105, the density of 7Li is smaller by ∼ 109,
and all other species are even more suppressed.
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• the final helium fraction depends slightly on the free parameter of this
problem, namely nB/s ∼ 10−10, which controls mainly the temperature
at which deuterium starts forming (see eq. (3.67)). Hence the neutron-to-
proton ratio at the beginning of deuterium formation depends on nB/s, as
well as the final helium abundance. The ratio nB/s is easy to relate today
to (np +nn)/nγ , and for fixed CMB temperature, this ratio can finally be
expressed as a function of ωb.

3.3.6 Recombination

After Nucleosynthesis, the universe contains a thermal plasma composed es-
sentially of relativistic photons and non-relativistic electrons, hydrogen nuclei
and helium nuclei; plus decoupled relativistic neutrinos. At T � MeV, weak
interactions are inefficient, but electromagnetic interactions ensure equilibrium
between electrons, nuclei and photons. More precisely, photons remain tightly
coupled to electrons via Compton scattering (e− + γ −→ e− + γ) and electrons
to nuclei via Coulomb scattering (e−+ p −→ e−+ p or e−+ 4He −→ e−+ 4He).
These interactions are efficient at least as long as hydrogen and helium remain
ionized.

The formation of neutral hydrogen depends on the reaction:

e− + p←→ H + γ . (3.81)

The exact description of recombination is considerably complicated by the fact
that hydrogen can form in various excited states, and then relax to its funda-
mental state while emitting photons: so, there are many states and reactions to
follow. Here we will neglect this issue and do as if hydrogen could only be in its
fundamental state.

Like for Nucleosynthesis, let us start from purely energetic considerations.
The binding energy of hydrogen, defined through:

mH = mp +me − ε0 , (3.82)

is equal to ε0 = 13.6 eV. Hence we expect that for T � 13.6 eV hydrogen is
fully ionized: any neutral hydrogen atom would immediately interact with an
energetic photon and get ionized. This does not mean that neutral hydrogen
forms immediately below T ∼ 13.6 eV. Just like for the formation of deuterium
during Nucleosynthesis, the balance of the above reaction depends on relative
abundances. We know that the density of electrons and protons is 1010 times
smaller than that of photons. So, much below T ∼ 13.6 eV, there should still
be enough energetic photons for preventing recombination.

In the exercise sessions, you will find that this expectation is confirmed by
the actual equations. You will define the hydrogen ionization fraction:

Xe ≡
ne

ne + nH
=

np
np + nH

. (3.83)

Assuming thermal equilibrium, you will derive the Saha equation

X2
e

1−Xe
=

1

ne + nH

(
meT

2π

)3/2

e−ε0/T , (3.84)

which gives an approximation of the temperature of recombination, found to be
close to Trec ∼ 0.254 eV. Below this temperature, the reaction leaves thermal
equilibrium, implying that the ionisation fraction freezes out. You will write
the Boltzmann equation governing the evolution of Xe. By integrating this
equation, one would find that the ionization fraction Xe becomes significantly
smaller than one around z ∼ 1080, and tends to an asymptotic freeze-out value
of order Xe → 5× 10−4 for z < 100.
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3.3.7 Photon decoupling

Till the time of recombination, photons are maintained in thermal equilibrium
mainly through Compton scattering off electrons:

γ + e− −→ γ + e− . (3.85)

The cross section 〈σv〉 of the above reaction is the Thomson cross section, equal
to 〈σT v〉 = 0.665 × 10−24cm2. Compton scattering of photons off electrons
becomes inefficient roughly when the scattering rate Γ = ne〈σT v〉 equals the
Hubble parameter. In order to evaluate this characteristic time, we can write
ne = np = XenB (like in the previous section, we neglect helium) and nB ∼
ρb/mp. We obtain:

Γ

H
= 0.07(a0/a)3XeΩbh

H0

H
. (3.86)

The Hubble rate in units of Hubble rate today can be estimated to be H/H0 =

Ω
1/2
M (a0/a)3/2 during matter domination. Taking a to be of the order of adec,

Ωb ' 0.4, ΩM ' 0.25 and h ' 0.7, we see that photon decoupling occurs when
Xe drops below ∼ 10−2 during recombination. Hence, recombination directly
triggers photon decoupling. This is in fact the main reason for which recom-
bination is important to study: it controls the decoupling of the CMB photon
that we observe today. The details of recombination affect CMB anisotropy
patterns. However, the temperature evolution of photons is completely unaf-
fected by their decoupling, exactly like for neutrinos. When photons decouple,
their relativistic Bose-Einstein distribution freezes-out, and only evolves at later
times due to the universe expansion, which induces p ∝ a−1 and hence T ∝ a−1.

A precise calculation shows that photon decoupling takes place near the
redhsift of recombination, zdec = zrec = 1080. Translating this redshift in terms
of proper time, one finds photons decouple approximately 380,000 years after
the initial singularity.

3.3.8 Very recent stages

From the point of view of the thermal history of the universe, very few phe-
nomena occur after photon decoupling. Each neutrino family i becomes non-
relativistic when Tν < mi, but since they are already decoupled, this has
no effect on the temperature and number density evolution (Tν ∝ a−1 and
nν ∝ a−3). Only the energy density and pressure of neutrinos are affected by
the non-relativistic transition. The consequences of this transition on structure
formation are interesting, but not discussed in this course.

There is however another important phenomenon occurring at low redshift,
than we just mention here briefly. When the first stars form, they emit a new
population of photons which partially reionize hydrogen and heavier elements.
However, this reionization is not sufficient for “re-coupling” photons to electrons
and ionized matter: only a small fraction of CMB photons have a chance to
experience Compton scattering between the time of decoupling and today. This
can be understood from eq. (3.86): when Xe goes back to one at small redshifts
z ∼ 10, the ratio (a/a0)3 is much smaller than at the time of recombination
(1003 smaller), so Γ/H remains smaller than one.

In figure 3.3, we summarize qualitatively the main results of this section.
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Figure 3.3: As a summary of Chapter 3, we show the qualitative evolution of
ni for each species, normalized in terms of nγ .



Chapter 4

Dark Matter

4.1 Historical arguments

There are many strong reasons to believe that in the recent universe, the non-
relativistic matter is of two kinds: ordinary matter and dark matter. One of
the well-known evidences for dark matter arises from galaxy rotation curves.

Inside galaxies, the stars orbit around the center. If we can measure the
redshift in different points inside a given galaxy, we can reconstruct the dis-
tribution of velocity v(r) as a function of the distance r to the center. It is
also possible to measure the distribution of luminosity I(r) in the same galaxy.
What is not directly observable is the mass distribution ρ(r). However, it is
reasonable to assume that the mass distribution of the observed luminous mat-
ter is proportional to the luminosity distribution: ρlum(r) = b I(r), where b is
an unknown coefficient of proportionality called the bias. From this, we can
compute the gravitational potential Φlum generated by the luminous matter,
and the corresponding orbital velocity, given by ordinary Newtonian mechanics:

ρlum(r) = b I(r), (4.1)

∆Φlum(r) = 4πG ρlum(r), (4.2)

v2
lum(r) = r

∂

∂r
Φlum(r). (4.3)

So, vlum(r) is known up to an arbitrary normalisation factor
√
b. However, for

many galaxies, even by varying b, it is impossible to obtain a rough agreement
between v(r) and vlum(r) (see figure 2.3). The stars rotate faster than expected
at large radius. We conclude that there is some non–luminous matter, which
deepens the potential well of the galaxy.

We can explain the same result in slightly different words. Assuming that
stars have a circular orbit (this is just an approximation), the relation between
force and accelerations gives us

v2(r)

r
=

∂

∂r
Φ(r) (4.4)

while the Poisson equation of newtonian mechanics gives us

∆Φ(r) =
1

r2

∂

∂r

(
r2 ∂

∂r
Φ

)
= 4πGρ(r) (4.5)

Finally, the mass of objects enclosed in a radius r is just

M(r) = 4π

∫ r

0

dr′(r′)2ρ(r′) . (4.6)
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Figure 4.1: A sketchy view of the galaxy rotation curve issue. The genuine
orbital velocity of the stars is measured directly from the redshift. From the
luminosity distribution, we can reconstruct the orbital velocity under the as-
sumption that all the mass in the galaxy arises form of the observed luminous
matter. Even by varying the unknown normalisation parameter b, it is impossi-
ble to obtain an agreement between the two curves: their shapes are different,
with the reconstructed velocity decreasing faster with r than the genuine ve-
locity. So, there has to be some non–luminous matter around, deepening the
potential well of the galaxy.

These relations and a simple integration by part give the exact relation

v2(r) =
GM(r)

r
. (4.7)

If we assume that all the mass is in the form of visible matter, there is a mismatch
between measurements of v(r) and estimates ofM(r). In particular, when we see
that most of the mass is located within a radius rv (where v stands for visible),
we expect that above rv, M(r) reaches a constant asymptote. Then v(r > rv)
should decrease nearly like 1/r (this is obvious from the last relation, and such
a decrease is called a Keplerian decrease). Instead, in many galaxies, beyond
such a radius rv, the few remaining starts tend to orbit much too fast. An
obvious solution is to assume that there is another type of non-visible matter
contributing to M(r), and even dominating it. If the non-visible matter is
spread over a larger radius than visible matter, then the most distant observable
galaxies are still orbiting in the gravitational potential created by dark matter.
This supports the notion of a dark matter halo.

A qualitatively similar argument applies to the dynamics of galaxies within
galaxy clusters. Actually, the hypothesis of dark matter was formulated for the
first time by Franz Zwicky in 1933, following the observation of surprisingly
large galaxy velocities inside the Coma galaxy cluster.

4.2 Other evidences for dark matter

Apart from galactic rotation curves, there are many arguments – of more cos-
mological nature – which imply the presence of a large amount of non–luminous
matter in the universe, called dark matter.

The observation of CMB anisotropies is the strongest one. It requires the
presence of a component not interacting with ordinary electromagnetic forces.
This component had to be present in the universe at least at early times, between
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z ∼ 106 and z ∼ 103. Assuming that this dark matter is stable and that its
number density is conserved until today, we obtain from the CMB an estimate of
the dark matter density today corresponding to 25% of the total energy density
of the universe (and 85% of the total non-relativistic matter density). Before
CMB observations, one could have thought that dark matter is just ordinary
matter that we cannot see, because it is not luminous, and it does not absorb
the light of other objects. If this was the case, from the point of view of CMB
physics, non-luminous ordinary matter would count as baryonic matter, not as
dark matter. Thanks to CMB data, we are now sure that dark matter is truly
different from ordinary atomic matter.

Strong lensing. Gravitational lensing is by definition sensitive to the total
gravitational potential created by both ordinary matter and dark matter. The
study of arclets and of strong lensing patterns allows to reconstruct the shape of
dark matter halos around some particular galaxy clusters, and to bring further
proofs of the existence of such halos.

Weak lensing. By looking at the statistics of the apparent orientation of
galaxies in different regions of the sky, one can average out the random distri-
bution of intrinsic shapes, and estimate the effect of the weak lensing of galaxy
images by dark matter (since this effect is coherent over many galaxies in a given
region). Weak lensing works surprisingly well and gives us a very good map of
the gravitational potential projected along the line-of-sight in each direction
around us. By studying the weak lensing of galaxies located at a given redshift,
one can even do tomography and reconstruct the 3D distribution of dark matter
(always with a poorer resolution along the 3rd dimension, i.e. along the line-
of-sight). This technique brings further evidence for dark matter, and allows to
estimate its abundance. It gives consistent results with other techniques, and
in particular with CMB observations.

The analysis of the bullet cluster shows very well the presence of two halos
that have crossed each other in the recent past without being deformed, unlike
the two associated clouds of gas, now displaced from the center of halos, and
shaped like a shock wave. This is another way to find that dark matter is very
weakly interacting - possibly only gravitationally.

There are other ways to prove the existence and the properties of dark matter
that we do not have time to summarise here. However, we should stress one
important fact: dark matter must be cold rather than hot. What do we mean
by this?

Within the standard model of particle physics, a good candidate for non-
baryonic dark matter would be a neutrino with a small mass. Then, dark matter
would become non-relativistic only recently. Today it would still possess large
velocities, just a few orders of magnitude smaller than the speed of light (this
hypothesis is called Hot Dark Matter or HDM). Because of these large velocities,
neutrinos could not remain confined in small gravitational potential wells. Even
in presence of gravitational clustering, they would form very large and not-so-
dense halos (while particles with negligible velocities, called Cold Dark Matter
or CDM, can cluster much better: they can form much smaller and much denser
halos).

If halos were huge and not very dense like in the HDM case, the number and
the distribution of galaxies (which depends on the gravitational effects of dark
matter) would be very different from what we observe. For that reason, HDM is
strongly excluded by several types of observations. Dark matter particles have
to be strongly non-relativistic, otherwise galaxy could not form with a sufficient
abundance during matter domination.
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4.3 Thermal WIMP model

Here we will review only one out of many possible models for explaining the dark
matter problem: the case of so-called WIMPs. WIMP means Weakly Interacting
Massive Particle.

Here Interacting refers to the fact that these particles are assumed to have
interactions with standard model particles (otherwise no interesting calculations
or predictions could be made...). More specifically, WIMP interactions are sup-
posed to be sufficiently efficient in the early universe for bringing WIMPs in
thermal equilibrium with other particles.

Weakly refers to the fact that we assume specifically that these interactions
are of the weak type (i.e. mediated by Z and W± bosons). Hence we expect
that these particles decouple when the temperature is roughly of the order of the
MeV, like for neutrinos. After decoupling, WIMPs interact only gravitationally
with other species.

Massive refers to the fact that we impose a sufficient mass for WIMPs to
decouple when they are non-relativistic: i.e. we assume a mass mχ � O(MeV).
If we did not make such an assumption, i.e. if the WIMPs decoupled when they
are still relativistic, they would share the same number density as neutrinos until
today. Then the correct value of the relic density ρ0

dm (or equivalently ωdm)
could only be obtained for mχ ∼ O(10) eV, and the typical velocity of WIMPs
today would be of the order of v ∼ 〈p〉/mχ ∼ T/mχ ∼ 10−4c. Such velocities
are still very large, and this dark matter candidate would fall in the category of
Hot Dark Matter. To avoid this, we impose non-relativistic decoupling: we will
see that this leads to a number density n0

χ very suppressed with respect to that
of neutrinos, and because the mass is large, to very small dark matter velocities:
in that case WIMPs fall in the category of Cold Dark Matter.

WIMPs are usually assumed to be neutral and to be their own anti-particle,
because they are Majorana fermions, that we will denote χ. Moreover, one usu-
ally imposes a Z2 symmetry on these particles. This means that the Lagrangian
can only feature even powers of χ. For instance, an interaction term χAB is
forbidden by the Z2 symmetry, while a term χ2AB respects the symmetry. As
a consequence, WIMPs cannot decay (χ −→ A + B + ... does not respect the
symmetry) but they can annihilate (χ + χ −→ A + B + ... does respect the
symmetry. In the latter reaction, the total charge on the left-hand side is zero,
since χ is its own antiparticle. Hence the total charge must be zero also on the
right-hand side. It means that pairs of WIMPs can only annihilate into neutral
particles, or into pairs of particles and anti-particles. For instance, they can an-
nihilate into higgs bosons, Z0 bosons, quark-antiquark pairs, lepton-anti-lepton
pairs, etc. This is model-dependent. “Popular” annihilation channels are, for
instance, electron-positron, or muon-antimuon, but there are many other pos-
sibilities. For the calculations in the rest of this section, it is not necessary to
specify explicitly what the dominant annihilation channel is.

Our goal is to compute the relic density of WIMPs and see whether it can
be related to the WIMP mass and/or annihilation cross-section. First, we will
assume that the annihilation reaction

χ+ χ −→ A(+B) (4.8)

remains in chemical equilibrium at every time. In that case, we can write
2µχ = µA(+µB). But since the right-hand side must be a particle carrying no
conserved charge (so µA = 0) or a particle-antiparticle pair (so µA = −µB), this
simplifies to µχ = 0. In that case, we know that for T � mχ

nχ =
ζ(3)

π2

3

4
gχT

3 , (4.9)
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while for T � mχ

nχ = gχ

(
mχT

2π

)3/2

e−
mχ
T . (4.10)

In fact, one could integrate the Fermi-Dirac phase-space distribution in order to
get nχ for any value of temperature. The exact relation has the two asymptotes
written above. This means that nχa

3 evolves with T like: (aT )3 for T � mχ,
i.e. like a constant when the effective number of effective degrees of freedom g∗
is constant; and like an exponentially decaying function for T � mχ. In the
rest of this section, we will call this particular solution nch.eq.

χ (T ) (the “density
assuming chemical equilibrium”).

In reality, we expect that WIMPs will not remain in chemical equilibrium
for a long time after the non-relativistic transition. Indeed, the mass of WIMPs
is usually assumed to be slightly above the order of the MeV (a typical range
for the most popular models is 100 MeV < mχ < 103 GeV). But we know that
weak interactions become inefficient around T ∼ O(MeV) for neutrinos, because
Γ = nν〈σνv〉 becomes smaller than H. For WIMPs, we expect a cross section of
the same order of magnitude (because it still depends on the Fermi constant),
and an annihilation rate Γ = nχ〈σAv〉 even smaller than for neutrinos, because
nχ gets exponentially suppressed after the non-relativistic transition (here 〈σAv〉
is the WIMP thermally averaged annihilation cross section). Hence we expect
WIMPs to leave thermal equilibrium even before neutrinos, and very soon after
their non-relativistic transition, when nχ becomes very small.

We know that “leaving chemical equilibrium” means, concretely, that the
WIMP number density will freeze out, and that nχa

3 will be conserved after
freeze-out. The evolution of nχ is given by the Boltzmann equation

ṅχ + 3Hnχ = n2
χ〈σAv〉

[
e−

2µχ
T − 1

]
. (4.11)

Using our definition of nch.eq.
χ (T ), and the fact that for T � mχ it is given by

eq. (4.10), we can write the Boltzmann equation in the following form for any
time after the WIMP non-relativistic transition:

ṅχ+3Hnχ = n2
χ〈σAv〉

(nch.eq.
χ

nχ

)2

− 1

 = 〈σAv〉
[(
nch.eq.
χ

)2 − (nχ)
2
]
. (4.12)

We now want to estimate the relic density of WIMPs at freeze-out. Let us use
a superscript f to denote quanties at that time (for instance, the freeze-out
temperature will be T f ). At freeze-out, the real solution nχ and the chemical
equilibrium solution nch.eq.

χ start to depart significantly from each other, but
they must still be of the same order of magnitude:

nch.eq. f
χ ∼ nfχ . (4.13)

Given our previous discussion on the Boltzmann equation in Chapter 3, we also
know that at freeze-out, the term 3Hnχ must be of the same order of magnitude
as the term on the right-hand side of eq. (4.12), so we can write

3Hfnfχ ∼ 〈σAv〉(nch.eq. f
χ )2 ∼ 〈σAv〉(nfχ)2 . (4.14)

Using these relations, we get a very useful result:

nch.eq. f
χ ∼ 3Hf

〈σAv〉
. (4.15)
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We can estimate Hf as a function of temperature using what we have learned
in Chapter 2 (Friedmann equation) and 3 (density of the thermal bath and
effective number of relativistic degrees of freedom g∗):

(Hf )2 =
8πG

3
ρf =

8πG

3

π2

30
gf∗ (T f )4 ∼ gf∗ (T f )4

M2
P

(4.16)

Hence

nch.eq. f
χ ∼ (gf∗ )1/2(T f )2

MP 〈σAv〉
(4.17)

Moreover, we know that after freeze-out, nχa
3 is exactly conserved. At the same

time the entropy conservation law says that g∗(Ta)3 is constant, so nχ evolves
proportionally to g∗T

3. Finally we can evaluate the WIMP relic density today:

nch.eq. 0
χ = nch.eq. f

χ

g0
∗

gf∗

(
T 0

T f

)3

. (4.18)

Putting everything together, this gives

nch.eq. 0
χ ∼ g0

∗

(gf∗ )1/2

(T 0)3

T f
1

MP 〈σAv〉
. (4.19)

Since WIMPs are strongly non-relativistic today, we can infer the energy density
by multiplying the number density by the WIMP mass. This gives:

ρch.eq. 0
χ ∼ mχ

T f
g0
∗

(gf∗ )1/2

(T 0)3

MP 〈σAv〉
. (4.20)

In order to get a definite prediction, and assuming that in a given model we
know g0

∗, g
f
∗ and 〈σAv〉, the only remaining task is to evaluate the ratio

mχ
T f

.
We know that

mχ
T crosses one at the time of the non-relativistic transition.

A crude approximation would consist in saying that freeze-out takes place very
soon after the non-relativistic transition, because it is triggered by the fast
exponential decay of nχ as a function of

mχ
T (as indicated by eq. (4.10)). In this

approximation we could use
mχ
T f
∼ 1.

This approximation is actually not so bad, because the true value of the
freeze-out temperature would be given by solving the equation

Γ

H
=
nch.eq.
χ 〈σAv〉

H
∼ 1 , (4.21)

with nχ given by eq. (4.10). Due to the factor e−
mχ
T , the solution for

mχ
T f

depends
logarithmically on the parameters of the problem (mass, cross-section): hence it
is true that

mχ
T f

is of order one, and can be considered as nearly independent of
the mass and cross-section in first approximation.

We are led to our final result: the relic density of WIMPs is governed by the
inverse annihilation cross-section, with

ρch.eq. 0
χ ∼ g0

∗

(gf∗ )1/2

(T 0)3

MP 〈σAv〉
. (4.22)

This is a very well-known result. Intuitively, WIMPs with a larger cross-section
remain in thermal equilibrium for a longer time after their non-relativistic tran-
sition. Hence they are more Boltzmann-suppressed at freeze-out, and a smaller
fraction of them survives until today. By matching ρch.eq. 0

χ to observations, one
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gets a prediction for 〈σAv〉 ∼ 10−26cm3s−1. This is precisely the order of mag-
nitude that one would expect for a particle interacting only with weak forces.
Many experiments of so-called dark matter direct detection have been built for
probing such particles. They are usually located in underground laboratories,
to filter out as many cosmic rays, ordinary electromagnetic radiation and terres-
trial radio-activity as possible. Most of them try to measure the small heating
of the detector caused by elastic interactions between detector particles and the
WIMPs crossing them. This is of course very difficult, due to the very small
interaction rate. But at least, people know what to search for: we have seen
that we can estimate the WIMP annihilation cross-section, and hence, also the
typical WIMP interaction cross sections. These detectors have not found any
significant signal so far.

There are many dark matter candidates falling in the category of WIMPs:
it is not so difficult to build a reasonable extension of the standard model of
particle physics featuring new particles, some of them having the basic properties
that we mentioned in this section. A famous examples is the neutralino of
supersymmetric models. However, not only WIMPs have not been discovered,
but the LHC is currently bringing no evidence in favour of supersymmetry.

Search for WIMPs will continue in the next years. In parallel, people are
thinking about other types of dark matter candidates (axions, sterile neutrinos,
...), and are working on other types of experiments to probe them. We do not
have time to describe these alternative scenarios in this chapter.
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Chapter 5

Cosmological perturbations

In all this chapter, we will study the evolution of cosmological perturbations
under the assumption that the universe is flat: this simplifies all equations
considerably.

5.1 Linear cosmological perturbations

5.1.1 Classification

We decompose the metric and stress-energy tensor of the universe into spatial
averages and linear perturbations,

gµν(t, ~x) = ḡµν(t) + δgµν(t, ~x) , (5.1)

Tµν(t, ~x) = T̄µν(t) + δTµν(t, ~x) , (5.2)

where ḡµν stands for the metric of the homogeneous and isotropic Friedmann–
Lemâıtre (FL) model. Being symmetric, the two perturbed tensors contain ten
degrees of freedom each, describing different aspects of gravity. Bardeen showed
in 1980 that they can be decomposed on the basis of scalars, vectors and tensors
under spatial rotations (spatial rotations play a special role because they leave
the FL background invariant). These three sectors are decoupled at first order
in perturbation theory.

In the vacuum, scalar and vector perturbations vanish, while tensor pertur-
bations can propagate if they have been excited: they account for gravitational
waves, the only “real” (propagating) gravitational degrees of freedom in Gen-
eral Relativity (GR). In the presence of matter, scalars represent the response
of the metric to an irrotational distribution of matter, and generalize Newton’s
theory of gravitation. Vectors represent the response of the metric to vorticity,
and describe phenomena with no equivalent in Newton’s theory, called “gravito-
magnetism”.

In minimal cosmological models, the vorticity of the various matter com-
ponents decays with time, and vectors can be neglected. Tensors may play a
small role in CMB anisotropies, that we will mention briefly in Sec. 5.2.8. They
can be studied separately, since they decouple from the scalar sector at first
order in perturbations. Hence this course will be essentially focused on scalar
perturbations.

The four scalar components of both the metric and stress-energy perturbed
tensors are contained in:

1. the (00) term,

2. the trace of the (ij) matrix,
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3. the irrotational part of the (0i) vector,

4. the traceless longitudinal part of the (ij) tensor.

For the perturbed metric δgµν , these components correspond (in the same order)
to:

1. the generalized gravitational potential ψ,

2. the local distortion φ of the average scale factor a(t): the “local scale
factor” is given by (1− φ)a,

3. the potential b such that δg0i = ∂ib,

4. the potential µ of the metric shear: δgij = (∂i∂j − 1
3δij∆)µ .

For the perturbed stress-energy tensor δTµν , these components (still in the same
order) represent:

1. the energy density perturbations δρ (we will usually refer to the relative
perturbations δ ≡ δρ/ρ̄),

2. the pressure perturbations δp,

3. the potential v of the irrotational component of the flux of energy, δT 0
i =

∂iv (v is sometimes called the velocity potential, since in the case of a fluid
it is related to the bulk velocity),

4. the potential s of the shear stress or anisotropic stress: δT ij = (∂i∂j −
1
3δij∆)s .

It is equivalent to use as a variable the “velocity potential” v or the “velocity
divergence” θ defined as

∂iδT
0
i ≡ (ρ̄+ p̄)θ = ∆v . (5.3)

Similarly, we can use the function σ instead of s, with the definition

(∂i∂j −
1

3
δij∆)δT ij ≡ (ρ̄+ p̄)σ = ∆(∆s) . (5.4)

The function σ is usually called the anisotropic stress, although the true anisotropic
stress is the component of δT ij derived from the potential s. The factors (ρ̄+ p̄)
in the two previous equations are introduced in the definitions in order to ob-
tain simple equations (some authors use alternative notations without these
factors or with different ones). To summarize, we see that we can manipulate
four degrees of freedom representing the scalar perturbations of matter fields,
that can be chosen to be the density fluctuation, pressure perturbation, velocity
divergence and anisotropic stress: {δ, δp, θ, σ}.

5.1.2 Gauges

In an idealised FL universe, there is only one time slicing compatible with the
assumption of homogeneity. Instead, in a perturbed universe, there is an infinity
of time slicings compatible with perturbation theory (i.e. such that on each slice,
all quantities remain close to their average value).

The perturbation of any quantity in a given point is the difference between
the true and the average quantity in this point. For instance, for the total
energy density ρ,

δρ(t, ~x) = ρ(t, ~x)− ρ̄(t) . (5.5)
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While ρ(t, ~x) is a locally, unambiguously defined quantity, ρ̄(t) depends on the
choice of equal-time hypersurface going through the point (t, ~x). With a different
choice, ρ(t, ~x) would be compared to the average performed on a different sheet,
that would take a different value. Hence δρ(t, ~x) also depends on the choice of
time slicing.

A gauge is a choice of time slicing. Gauge transformations are induced by
coordinate transformations xµ 7→ xµ+εµ mapping the points of one time slicing
to those of another time slicing. All coordinate transformations do not induce
a valid gauge transformation: the condition that perturbations must still be
linear after the transformation restricts εµ to be small in every point.

A naive study of the equations of motion of perturbed quantities would be
plagued by the freedom to change the gauge without changing physical results:
some solutions of the full equations would be “gauge modes” with no observable
consequences. To deal with this issue, one can adopt one of two point of views:

• one can derive gauge-invariant quantities (i.e., non-trivial integro-differential
combinations of the metric and stress-energy tensor components left invari-
ant by a gauge transformation), and gauge-invariant equations of motions
for these quantities. Note that there are four scalar degrees of freedom in
δgµν and two scalar degrees of freedom in the four-vector field εµ inducing
gauge transformations: namely, ε0 and the potential e such that εi = ∂ie.
Hence we can use gauge transformations to cancel two scalar degrees of
freedom, and build up two independent gauge-invariant scalars. One way
to define them is through the two Bardeen potentials ΦA and ΦH , defined
by Bardeen (1980) as two integro-differential combinations of ψ, φ, b, µ.

• one can fix the gauge, i.e. introduce a condition such that the time slicing
is unique. Then the number of independent solutions to the equations
will be the same as in the gauge-invariant formalism. In any case, one can
show that truly observable quantities are always independent of the gauge.
Obtaining them after solving equations in the gauge-invariant formalism
or in one particular gauge should not make any difference in practice.

A convenient gauge choice for a pedagogical introduction to CMB and matter
scalar perturbations is the so-called Newtonian gauge or longitudinal gauge, in
which one imposes that non-diagonal scalar perturbations of the metric vanish:
b = µ = 0. This prescription can be showed to fix a unique time slicing. In this
gauge, adopting units such that c = 1 and using proper time t, the line element
reads:

ds2 = −(1 + 2ψ)dt2 + (1− 2φ)a2d~l 2 , (5.6)

where d~l 2 stands for the cartesian measure (dx2 + dy2 + dz2) for a flat FL
model, or for (1± kr2)−1dr2 + r2(sin θ2dθ2 + dϕ2) for an open/closed FL model
in spherical coordinates. We are still free to redefine time (by definition, a time
redefinition leaves the time slicing invariant). Lots of results in cosmological
perturbation theory look simpler when using conformal time η, defined up to
a constant by dη = dt/a. In this course we fix the constant in such way that
η −→ 0 at the vicinity of the initial singularity, when ρ −→∞ (this prescription
would not work if we were studying cosmological inflation, but in this course,
we are not). Conformal time is convenient because photons traveling in a flat
unperturbed FL universe along geodesics crossing the origin of the system of
coordinates obey to dr = dη (this comes from a dl = dt, i.e. from ds = 0
with the restriction dθ = dφ = 0). Hence conformal time is a measure of
time based on the comoving distance travelled by a photon1, and the comoving

1In a universe with non-zero spatial curvature, this remains true, provided that the comov-
ing distance is defined not like r, but like χ ≡

∫
(1± kr2)−1/2dr.
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distance to a given object coincides with its “look-back conformal time”. In
this course we will use dots for derivatives with respect to proper time and
primes for derivatives with respect to conformal time. The Hubble parameter
(or expansion rate parameter) reads

H =
ȧ

a
=
a′

a2
, (5.7)

the Hubble radius is RH = 1/H, and the condition that a Fourier mode of
physical wavelength λ crosses the Hubble radius is

λ = RH ⇔ 2π

k
a =

1

H
⇔ k ∼ aH =

a′

a
. (5.8)

One advantage of the Newtonian gauge is that the gauge-invariant Bardeen
potentials {ΦA,ΦH} reduce in this gauge to the metric perturbations {φ, ψ}:
the evolution of the Newtonian metric perturbations informs us directly on that
of two gauge-invariant quantities. Other interesting properties of {φ, ψ} appear
when writing the Einstein equations in the Newtonian gauge. The full Einstein
equations linearized at first order in perturbations feature four equations relating
scalar degrees of freedom. One of them, associated to the traceless longitudinal
part of δGij = 8πGT ij , gives (assuming a flat FL background)

2

3
(k/a)2(φ− ψ) = 8πG

∑
x

(ρ̄x + p̄x)σx , (5.9)

where the index x runs over all the species contributing to the total stress-energy
tensor. This means that when the universe contains only shearless components
with σx = 0 (as would be the case in the presence of perfect fluids), the two
metric perturbations are equal. Next, the Einstein equation δG0

0 = 8πGT 0
0 gives

(still assuming a flat FL background)

2a−2

[
k2φ+ 3

a′

a

(
φ′ +

a′

a
ψ

)]
= −8πG

∑
x

ρ̄xδx . (5.10)

The term on the right-hand side involves the total energy perturbation δρtot =∑
x ρ̄xδx. In the short scale (more precisely, sub-Hubble) limit, the term con-

taining k2 dominates the other terms in the square brackets, and we recover the
Poisson equation

−k
2

a2
φ = 4πGδρtot , (5.11)

where the factor−k2/a2 represents the Fourier transform of the physical Laplace
operator in an expanding universe. Note that in the Poisson equation one may
have expected to see the generalized gravitational potential ψ instead of φ:
however, in the sub-Hubble limit, the shear of individual components is usually
either null or negligible, so that φ = ψ.

5.1.3 Equations of motion

In the minimal cosmological scenario, the universe features several species with
spatial fluctuations, described with different equations because of their distinct
properties: cold dark matter (CDM) is non-relativistic and collisionless, neutri-
nos are ultra-relativistic and collisionless at the times of interest, baryons are
non-relativistic and smoothly interpolating from a strongly coupled to decou-
pled regime, and finally photons are ultra-relativistic and interpolating between
the same two regimes.
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The equation of conservation of the total stress-energy tensor, DµT
µ
ν = 0

(deriving from Bianchi identities), yields two scalar and two vector equations.
The scalar ones are the conservation of energy equation and the Euler equation.

For any single component experiencing no interaction with other species
(other than gravitational), the equation DµT

µ
ν = 0 applies to the individual

stress-energy tensor: it gives one continuity and one Euler equation for that
component. The evolution of single component experiencing interactions is also
given by the continuity and Euler equation, but with an extra source term
accounting for stress-energy injection/leak caused by the interaction.

We have seen that the perturbations of each component x can be described
by four variables {δx, δpx, θx, σx}. Hence, in general, two equations of motion
are not sufficient for closing the system. However:

• for a perfect fluid, microscopic interactions impose local thermodynamical
equilibrium. The pressure is then isotropic2, with σx = 0. In addition,
pressure perturbations obey δpx = c2aδρx, where ca is the adiabatic sound
speed inferred from the equation of state of the fluid. If σx vanishes and
δpx is a function of δρx, perturbations in the fluid are described by only
two independent functions δx ≡ δρx/ρ̄x and θx. If the collision term
also vanishes or is specified, the two equations of motion (continuity and
Euler) are sufficient for closing the system and computing the evolution
of perturbations.

• for a decoupled or weakly interacting species, there are no such simplifica-
tions concerning the anisotropic stress and pressure perturbation. Hence,
in general, the two equations inferred from stress-energy conservation are
not sufficient. For such species, one has to use the more general Boltzmann
equation, giving the evolution of each phase-space distribution:

d

dη
fx =

∑
y

Cxy[fx, fy] , (5.12)

where the sum holds over the species y coupled with x. Each phase-space
distribution can be decomposed into a background and perturbation part:

fx(η, ~x, ~p) = f̄x(η, |~p|) + δfx(η, ~x, ~p) , (5.13)

where ~p stands for momentum, |~p| for its modulus, and the background
part does not depend on the direction of ~p by assumption of isotropy.

• fully decoupled CDM is a particular case of a collisionless species with
negligible velocity dispersion (the word “cold” refers precisely to this last
assumption). Hence, it behaves in the same way as a pressureless perfect
fluid, although in reality it has no interactions and should not be called a
fluid. Since the velocity dispersion is negligible, in a given point, all par-
ticles share the same velocity, imposed by gravitational flows (while for
non-cold collisionless species, the velocity would get two contributions, one
from gravitational flows, and one from the phase-space distribution func-
tion). Hence the anisotropic pressure vanishes (see the previous footnote).
The pressure perturbation δpx is also related to the velocity dispersion in
a given point, and can be neglected with respect to the density pertur-
bation in the CDM case. Hence CDM is formally equivalent to a perfect

2An anisotropic shear stress σ 6= 0 reflects the fact that in each given point, particles travel
with different velocities (due to some intrinsic velocity dispersion and/or a superposition of
several flows in phase space), leading to anisotropic pressure. This contradicts the assumption
of a perfect fluid, in which local interactions result in a unique bulk velocity (after coarse-
graining over microscopic scales), and erase anisotropic pressure.
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fluid with no anisotropic stress and no pressure perturbation (or in other
words, with a sound speed cs = 0). In that case, the two equations of
motion inferred from DµT

µ
ν = 0 are sufficient, like for a fluid.

Gravitational interactions between species are accounted by the presence of
metric perturbations in each equation of motion (more specifically, terms in
k2ψ accounting for gravitational forces, and terms in φ′ accounting for dilation
effects, i.e. for local distortions of the scale factor with respect to a). Hence,
in order to close the full system of equations, we still need two independent
relations, to be chosen among the four scalar Einstein equations: they provide
the value of k2ψ and φ′ at each time, as a function of all matter fields.

5.1.4 Initial conditions

We wish to study the evolution of matter perturbations, starting from some
early time at which all Fourier modes of interest (those which are observable
in the CMB spectrum and in the matter power spectrum on linear or mildly
non-scales) are still outside the Hubble radius. Indeed, super-Hubble modes ex-
perience a trivial evolution, unaffected by small scale interactions (Thomson or

Coulomb scattering, usual gravitational force ~∇φ, etc.). Hence, the perturba-
tions evaluated at some arbitrary time but on super-Hubble scales reflect directly
the mechanism responsible for the formation of perturbations in the very early
universe. In the standard cosmological model, these initial conditions can be
inferred from inflation.

Typically, a good time for setting initial conditions is when the redshift
z = a0/a − 1 is of the order of 105: at this time, all comoving scales that are
observable in the CMB and linear matter power spectrum still verify k � aH.

It is crucial to understand that, as long as the background cosmology is
assumed to be of the FL type, the perturbed stress-energy momentum tensor
δT νµ must be diagonal on super-Hubble scales. Indeed, the background tensor

T̄ νµ is diagonal, and of the form: diag(−ρ̄, p̄, p̄, p̄). This can be showed to be
the most general assumption compatible with homogeneity and isotropy. Let
us assume that we Taylor-expand δT νµ in powers of the variable (kη). For any
power-law scale factor, aH is given by 1/η times a factor of order one. Hence
the limit kη � 1 represents precisely the super-Hubble limit. In the Taylor
expansion, the zero mode should share the same properties as the background
solution, and be diagonal. Higher order terms account for contributions to δT νµ
growing with time, and possibly becoming important around the time of Hubble
crossing.

The total scalar perturbations δρ and δp are the only ones preserving the
diagonal form of δT νµ : we conclude that they are the only ones that do not vanish
at order zero in the (kη) expansion. Using stress-energy conservation equations,
one can show that the part of δT νµ associated with the velocity divergence is of
order one in (kη), while the part associated to the total anisotropic stress is of
order two.

Suppose that the universe contains initially N uncoupled perfect fluids3,
with N known sound speeds c2x = δpx/δρx. There are 2N independent initial
conditions, corresponding to possible initial values of each δx and each δ′x. Im-
portantly, in the 2N -dimensional basis of IC’s, one basis vector is very special,
as we shall see below.

Before studying perturbations, one should have solved for the background
evolution: all background quantities should be known, including for instance

3The discussion presented in this section could be generalized to N coupled species, not all
of them being perfect fluids: the conclusions would not change qualitatively, and we restrict
here to N uncoupled fluids for simplicity.
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the density ρ̄x(η) and pressure p̄x(η) of each species x. Now, let us assume that
the real universe is perturbed initially by a single degree of freedom (one may
say, by a single initial time shifting function). This is the case in single-field
inflationary cosmology: during inflation, there is a single clock (the inflaton),
and perturbations arise from a single time shifting function (the inflaton per-
turbation).

As long as we are dealing with super-Hubble modes, we can neglect micro-
scopic interactions and say that the evolution in each point (in fact, in each
Hubble patch) is still given by homogeneous cosmology, taking this shift func-
tion δη(~x) into account:

∀x, ρx(η, ~x) = ρ̄x (η + δη(~x)) = ρ̄x(η) + ρ̄′x(η) δη(~x)

px(η, ~x) = p̄x (η + δη(~x)) = p̄x(η) + p̄′x(η) δη(~x) (5.14)

where in the last equalities, terms of order two or higher in δη have been ne-
glected. The above ansatz restricts a lot the choice of possible initial conditions.
Indeed, you will show in the exercise sessions that it implies a relation between
all density fluctuations,

∀x, y, δρx
ρ̄x + p̄x

=
δρy

ρ̄y + p̄y
. (5.15)

It shows that in presence of such initial conditions, everything is fixed up to
a single function of ~x. Let us take the example of a universe containing only
photons, baryons, cold dark matter and neutrinos. We can use the fact that
for non-relativistic species p̄x � ρ̄x, while for ultra-relativistic ones p̄x = ρ̄x/3.
Hence, if one function is known — for instance, δγ(~x) at initial time — the
others can be derived from

δb = δcdm =
3

4
δν =

3

4
δγ . (5.16)

In the exercises, you will also show that the ansatz of Eqs. (5.14) implies

δptot(η, ~x) = c2s (η) δρtot(η, ~x) , (5.17)

where the squared total sound speed c2s can be easily expressed as a weighted av-
erage over the squared adiabatic sound speed of individual components. Hence,
the total matter content resulting from the sum of all components also features
an adiabatic sound speed. For that reason, such initial conditions are usually
called adiabatic initial conditions.

More general initial conditions not obeying Eqs. (5.14) can be expanded
on different bases. A famous basis is formed by (i) the adiabatic mode; (ii)
(N−1) non-decaying isocurvature modes, getting their name from the property
that for each of them, the total density (and spatial curvature) perturbations
vanish asymptotically in the super-Hubble limit, while two species have opposite
density perturbations compensating each other; (iii) N decaying modes that are
irrelevant for most purposes.

It is clear from the previous discussion that non-adiabatic initial conditions
should only be considered when assuming that primordial perturbations are
generated by more than one degree of freedom (for instance, two inflaton fields,
or one inflaton and one axion, etc.). The assumption of several degrees of free-
dom is necessary but not sufficient. The primordial universe may contain a
mixture of adiabatic and isocurvature modes until a time at which all species
are brought in thermal equilibrium. At that time, if we further assume that
all chemical potentials vanish, the perturbations of each species can be inferred
from those of temperature, T (η, ~x) = T̄ (η) + δT (η, ~x). Then, temperature plays
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precisely the role of a single time-shifting function. Any non-adiabatic initial
condition is washed out and becomes irrelevant. Hence, isocurvature modes can
be observable — for instance in the CMB — only under additional assumptions.
For instance, one species carrying isocurvature perturbations might remain out
of equilibrium at all times, or might feature a chemical potential with spa-
tial fluctuations. There exist a few non-minimal, but still reasonable scenarios
featuring isocurvature perturbations (with axions, curvatons etc.). Ultimately,
the presence of isocurvature modes is to be tested with observations. Current
CMB observations put strong limits on the amplitude of such modes, and prefer
purely adiabatic initial conditions. We will restrict to this case in the rest of
this course.

For adiabatic initial conditions, we found the relation (5.15) holding between
density fluctuations. Also, if we do not consider the case of species with a non-
zero anisotropic stress, we can assume that φ = ψ at initial time. By plugging
Eqs. (5.16), (5.17) and φ = ψ into the Einstein equations, one is led to a second-
order differential equation for ψ only. During the radiation dominated era, one
can show that this equation has two solutions, one constant in time, and one
decaying. The (00) Einstein equation then shows that the constant solution is
related to density fluctuations through

−2ψ = −2φ = δtot ' δγ = constant . (5.18)

Hence, in the Newtonian gauge and for adiabatic initial conditions, super-
Hubble metric fluctuations and density fluctuations are static. In fact, on
super-Hubble scales, there can only be some time evolution when the uni-
verse changes of total equation of state (or equivalently, of expansion law).
This is the case at the time of equality between radiation and matter. During
matter domination and on super-Hubble scales, they freeze out again. Then,
the relation −2ψ = −2φ = δtot and eq. (5.16) are still satisfied, but now
δtot ' δb = δcdm = 3

4δγ . This detail will become important when studying
the Sachs-Wolfe effect in section 5.2.3.

5.1.5 Power spectra and transfer functions

The theory of cosmological perturbations is a stochastic theory: the fluctuations
of a given quantity in a given point, A(η, ~x), obey a distribution of probability.
As long as we stick to linear perturbation theory, there is a “linear transport of
probability” from one time to another time. Let the probability of A in a given
point at time η1 be P1(A). In the same point and at η2, the linear evolution
would have transformed each value A into αA, where α is the linear growth (or
decrease) factor of A between η1 and η2. So the probability of A at time η2

is given by P2(A) = P1(A/α). This “linear transport of probability” implies
that the linear evolution respects the shape of the probability distribution, and
rescales all its statistical moments of order n by αn. In particular, if the initial
probability is Gaussian, the statistics will remain Gaussian at any later time, and
the evolution of the system can be formulated as an evolution of the root mean
square of all quantities. In summary, as long as we assume linear perturbations
with Gaussian initial conditions, our goal is to solve for the evolution of the root
mean squares of the fluctuations.

The equal-time 2-point correlation function of any quantity A in real space
is given by

〈A(η, ~x)A(η, ~x′)〉 ≡ ξ(η, ~x, ~x′) SHI= ξ(η, |~x′ − ~x|) , (5.19)

where the last equality holds as a consequence of Statistical Homogeneity and
Isotropy (SHI, assumed to hold in a perturbed FL universe). Indeed, the corre-
lation function should be invariant under spatial translations and rotations.
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We can go to Fourier space and use the same letter to denote the Fourier
transform of A. If A is real, A(η,−~k) = A∗(η,~k). It is easy to show that
the previous equation (using the assumption of SHI) implies that the two-point
correlation function in Fourier space reads

〈A(η,~k)A∗(η,~k′)〉 SHI= δD(~k′ − ~k)PA(k) , (5.20)

where δD is the Dirac distribution. Here, statistical homogeneity is responsible
for the fact that the two-point correlation vanishes for ~k 6= ~k′, and statistical
isotropy for the fact that PA only depends on the modulus k = |~k|. The function
PA(k) is usually called the power spectrum of A. Some authors prefer to refer
to the “dimensionless power spectrum”, defined as

PA(k) ≡ k3

2π2
PA(k) . (5.21)

The reason is that typical expressions for the average of various quantitites in
real space consist in the convolution of the power spectrum with some window
function f(k), like in∫

d3~k

(2π)3
PA(k)f(k) =

∫
4πk2dk

(2π)3
PA(k)f(k) =

∫
dlogk PA(k)f(k) . (5.22)

Hence the dimensionless spectrum PA(k) stands for the weight of each loga-
rithmic interval in the integral. The term “scale-invariant spectrum” refers to
PA(k) being independent of k, i.e. PA(k) ∝ k−3.

We know that for adiabatic initial conditions, all perturbations are related
to each other through Eqs. (5.16, 5.18). Hence, with Gaussian adiabatic initial
conditions, specifying the primordial power spectrum of one quantity is sufficient
for knowing everything about the system. For instance, if we assume that the
power spectrum of the metric perturbation ψ is a given function Pψ(k), then
we infer from Eqs. (5.16, 5.18) that the photon and baryon primordial spectra
are given by Pγ(k) = 4Pψ(k) and Pb(k) = 9

16Pγ(k) = 9
4Pψ(k).

By convention, the primordial spectrum is usually given for the variable
R, which represents the spatial curvature perturbation on one initial comoving
hypersurface (i.e. an hypersurface orthogonal to the energy flux of the total
cosmic fluid in each point). The advantage of using this quantity is that it
is conserved on super-Hubble scales for adiabatic initial conditions (while φ
and ψ get rescaled when the equation of state of the universe changes, e.g. at
radiation-matter equality). In the Newtonian gauge, R relates to ψ and to the
total density perturbation through

R = ψ − 1

3

δρtot

ρ̄tot + p̄tot
. (5.23)

The power spectrum of a given quantity at some arbitrary time can be
decomposed into two parts, one accounting for initial conditions, and one ac-
counting for linear evolution with time:

〈A(η,~k)A∗(η,~k′)〉 = δD(~k′ − ~k)

[
A(η,~k)

R(~k)

]2

PR(k) . (5.24)

In the above equation, there is no time argument for R(~k) since this quantity
is conserved on super-Hubble scales. We just assume that R is evaluated at
a time such that k � aH for all modes of interest. In a FL universe, the
equations of motion of all perturbations respect isotropy, and do not depend
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on the direction of the wavector ~k. Hence the ratio between brackets in the
last equation is a function of k, not ~k. This function accounts for the linear
evolution, independently of initial conditions. It is called the “transfer function”
of A. In this course, we will denote transfer functions with the same letter as
the perturbations themselves, but with the modulus of k as an argument, i.e.

A(η, k) ≡ A(η,~k)

R(~k)
. (5.25)

In summary of this section, solving for cosmological perturbations (in a model
with adiabatic Gaussian IC’s) amounts in

• postulating a primordial spectrum, or calculating it within the framework
of a model, for instance of inflation;

• solving the equations of motion of all perturbations, with quantities nor-
malized initially to R(~k) = 1, in such a way to obtain all transfer functions
A(η, k) and to infer the evolution of the various root mean squares.

5.2 CMB temperature anisotropies

From now on, we will assume for simplicity that the universe is flat.

5.2.1 Photon scattering rate

CMB physics consists is the study of electron, baryon and photon perturba-
tions on cosmological scales, taking into account their gravitational coupling
with collisionless species such as decoupled neutrinos and CDM. Electrons and
baryons carry opposite electric charges and are coupled to each other through
very efficient Coulomb scattering processes. Electrons and photons are coupled
through Thomson scattering, which is the limit of Compton scattering when
electrons are non-relativistic and photons carry a smaller energy than the rest
mass of the electron. Then, the scattering process results mainly in a deflection
of the photon, with a negligible transfer of energy between the two particles.
The leading interaction between baryons and photons is the gravitational one.

In units such that c = 1, the Thomson scattering rate (with respect to
conformal time) is given by Γ = σTanexe, where σT is the Thomson scattering
rate, a is the scale factor, ne is the total electron number density (scaling like
a−3 due to dilution), and xe is the ionized electron fraction. The product ane
scales like a−2. The ionized fraction is close to one at high energy. Then, at the
time of recombination between electrons and nuclei (around z ∼ 1080), which
falls at the beginning of matter domination, ne drops abruptly to very small
values. This causes Thomson scattering to become suddenly very inefficient,
and photons to decouple from electrons.

Hence photon decoupling is the story of Thomson scattering becoming inef-
ficient, while Coulomb scattering remains very strong. For that reason, one can
describe electrons and baryons as a single tightly-coupled fluid. People often
refer only to baryons for simplicity. At early time, the full system of (electrons)-
baryons-photons is also tightly coupled, but later on, it splits progressively into
two collisonless species, (electrons)-baryons on the one hand, photons on the
other hand.

The thermodynamical description of recombination is very technical, due
to the different energy level of atoms (in particular, of hydrogen). In order
to understand CMB anisotropies, we only need to describe the main results of
recombination studies at a very qualitative level.
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• The free electron fraction xe(η) starts from one at high redshift. It de-
creases sharply at the recombination time (corresponding to z ∼ 1080 or
T ∼ 0.3 eV), and freezes at a very small value (due to departure from ther-
mal equilibrium). Around z ∼ 10, star formation causes a reionization of
the universe, and xe goes up again to one.

• The Thomson scattering rate Γ = σTanexe evolves like a−2xe. Before
recombination, Γ � a′

a , and the universe is opaque. The sudden drop

of xe at recombination renders the universe transparent: Γ � a′

a . Due

to the dilution factor coming from ne, Γ remains much smaller than a′

a
even during reionization, and the universe keeps being transparent (this
is why despite of reionization, most photons emitted at recombination do
not interact anymore, and allow us to observe anisotropies on the last
scattering surface).

• The optical depth τ(η) ≡
∫ η0

η
dηΓ(η) represents the opacity of the uni-

verse at a given time, when seen from today (when η = η0). It tends to
infinity when η −→ 0, falls below one at recombination and stabilize at a
value of the order of 0.1 between recombination and reionization. After
reionization it decreases smoothly and reaches zero today by definition.

• The visibility function g(η) ≡ −τ ′e−τ gives the probability that a CMB
photon seen today experienced its last scattering at time η. It starts
from negligible values at high redshift (suppressed by the e−τ factor).
It has a narrow spike around the time of recombination, and then it falls
again to negligible values due to the smallness of τ ′ between recombination
and reionization. It develops a second smaller and wider spike around
reionization. This function shows that most CMB photons did not interact
between the last scattering surface and today, while a minority rescattered
at reionization. The width of the recombination spike gives an indication
on the thickness of the last scattering “surface”.

• The diffusion length λd(η) is an important quantity for understanding the
damping of temperature anisotropies on small scales. At any given time,
the comoving mean free-path (mfp) of photons is given by rmfp = 1/Γ(η)
(still in units where c = 1). If the photons experience a random walk
analogous to Brownian motion in a gas, the comoving distance over which
they travel between time ηini and η can be approximated by

rd ∼
[∫ η0

ηini

dη Γ r2
mfp

]1/2

=

[∫ η0

ηini

dη Γ−1

]1/2

. (5.26)

This physical diffusion length of photons is given in this approximation
by λd ' ard. It grows quickly from very small to very large scales (com-
parable to the Hubble scale) around the time of recombination.

5.2.2 Boltzmann equation

Since photons decouple from baryons near the recombination time, we cannot
describe them with fluid equations, and need to solve the Boltzmann equation

d

dη
f = C [f, fe] (5.27)

at order one in perturbations. The right-hand side stands for the photon-
electron coupling due to Thomson scattering. As explained in the previous
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section, electrons and baryons are so tightly coupled that it makes no differ-
ence to think of this term as a photon-electron or photon-baryon coupling term.
Solving this equation is involved because the photon phase-space distribution
f involves many arguments, f(η, ~x, ~p). Fortunately one can reduce the dimen-
sionality of the problem. First, we notice that as long as photons are in thermal
equilibrium with electrons (and hence with baryons), they are entirely described
in any point by the local value of the equilibrium temperature T (η, ~x). The
phase space distribution is then of the Bose-Einstein form:

f(η, ~x, ~p) =
1

e
p

T (η,~x) − 1
. (5.28)

It can be expanded into a background part and a first-order perturbation, f =
f̄ + δf , with:

f̄(η, p) =
1

e
p

T̄ (η) − 1
, δf(η, ~x, ~p) =

df̄

d log p

δT (η, ~x)

T̄ (η)
. (5.29)

We see that in the tightly-coupled regime we could replace the variable f(η, ~x, ~p)
by the lower-dimensional variable Θ(η, ~x) ≡ [δT (η, ~x)/T̄ (η)]. The Boltzmann
equation leads to an equation of motion for Θ(η, ~x).

At later times, when photons decouple, the shape of the Bose-Eisntein distri-
bution of photons is preserved. This can be infered from the geodesic equation.
This equation tells how the individual momentum p of photons evolve when
they are decoupled and they travel in the perturbed universe. In the Newtonian
gauge, it reads

d(a p)

dη
= −a pφ′ − a ε n̂ · ~∇ψ . (5.30)

The left-hand side represents the time evolution of the product (ap) for a photon
of momentum p traveling over a geodesic. In a perfectly homogeneous universe,
the photon would only experience the average cosmological redshifting, p ∝ a−1,
and the product (ap) would be conserved. Due to presence of perturbations in
the universe, photons experience gravitational interactions and the product (ap)
varies. The first term −a pφ′ accounts for dilation, i.e. for the fact that locally,
the expansion of the universe is a bit more advanced or delayed than the average
(remember that a(1 + φ) can be seen as the “local scale factor”). This means
that the redshifting of the photon is also a bit more advanced or delayed locally.
The second term accounts for the gravitational blueshifting of photons falling
in gravitational potential wells (or redshifting of those leaving potential wells).

The energy ε ≡
√
p2 +m2 can be simply replaced by p for massless photons. In

that case we can rewrite the geodesic equation as

d ln(a p)

dη
= −φ′ − n̂ · ~∇ψ . (5.31)

The fact that p disappeared from the right-hand side is crucial: it shows that
photons of different momenta traveling in the perturbed universe along a given
geodesic all experience the same relative momentum variation. The consequence
is that there can be no distortions of the Bose-Einstein shape of f . However,
photons traveling along different geodesics and in different directions experience
different redshifting. Hence the distribution function acquires a dependence on
one extra argument, the direction n̂ of propagation (n̂ ≡ ~p/p):

f(η, ~x, ~p) =
1

e
p

T (η,~x,n̂) − 1
. (5.32)
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We can perform the same decomposition in terms of background and pertur-
bations as in eq. (5.29). The difference is that Θ = δT

T̄
is now a function of

(η, ~x, n̂). The Boltzmann equation can now be used to derive an equation of
motion for Θ(η, ~x, n̂).

If we work in Fourier space, we can derive the equation of motion for the
function Θ(η,~k, n̂). Because of the statistical isotropy of the FL universe, this

equation does not depend explicitly on ~k nor n̂, since there is no preferred
direction: it depends only on the direction of propagation relatively to the
considered wavenumber , i.e. on the product (~k · n̂). Hence the equation of

motion can be written in terms of k and of the angle θ such that (~k · n̂) = k cos θ.

The initial conditions for Θ do depend on the wavevector ~k (since each mode
gets random initial conditions), but they also depend only on θ rather than n̂,
for a reason that will become clear in the paragraphs below. Hence we can
entirely eliminate n̂ from the problem, and solve the equation of motion for
Θ(η,~k, θ).

Finally, we can expand the temperature anisotropy with respect to θ using
a Legendre transformation:

Θ(η,~k, θ) =
∑
l

(−i)l(2l + 1)Θl(η,~k)Pl(cos θ) . (5.33)

Here the Θl’s are the temperature anisotropy multipoles, and Pl the Legendre
polynomials. It can be shown that the monopole Θ0 is related to the photon
density fluctuation δγ in a given point, the dipole Θ1 to its velocity divergence
θγ , and the quadrupole Θ2 to its anisotropic stress σγ . The Boltzmann equation
can be written as an infinite hierarchy of equations of motion for the coupled
multipoles Θl.

Actually, the equation of motion for Θ takes a striking form when written
in real space, before Fourier and Legendre expansions:

Θ′ + n̂ · ~∇Θ− φ′ + n̂ · ~∇ψ = −Γ (Θ−Θ0 − n̂ · ~ve) . (5.34)

We recall that Γ is the conformal Thomson scattering rate, Θ0 the temperature
monopole (i.e. the average of Θ(η, ~x, n̂) over all directions n̂), and ~ve the bulk
velocity of electrons, equal to that of baryons due to tight Coulomb interactions.
We recall that the variable θb is defined as the divergence of ~vb = ~ve.

This equation is illuminating, since it shows that at early times, when pho-
tons, electrons and baryons form a tightly-coupled fluid, the fact that Γ is huge
forces Θ to evolve in such way that the parenthesis on the right-hand side van-
ishes. When this is the case, Θ can only have two non-zero component: a
monopole Θ0, and a dipole equal to n̂ · ~vb. The condition on the dipole can be
written equivalently as θγ = θb.

This should remind us of the discussion of Sec. 5.1.3, when we noticed that
a perfect fluid can be described in terms of δx, c2s and θx only, with a vanishing
anisotropic stress σx. Here, we see concretely how this conclusion emerges from
the Boltzmann equation in the tightly-coupled regime: Θ2 (related to σγ) and
all higher multipoles vanish; the photon perturbations can be described in terms
of only two independent variables Θ0 and Θ1 (or δγ and θγ), like in a perfect
fluid.

The fact that in the tightly-coupled limit the system is driven towards θγ =
θb simply shows that the interaction imposes a common bulk velocity to photons,
baryons and electrons, as it should be the case in any tightly-coupled fluid (note
that we are referring to bulk velocities, not to individual velocities of particles,
which are still equal to c for interacting photons).

In the tightly-coupled regime, the dipole component of Θ(η, ~x, n̂) is given

by n̂ · ~vb, with θb ≡ ~∇ · ~vb. Hence in Fourier space this component reads
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i(n̂ · ~k)k−2θb = i(cos θ)k−1θb. This justifies the fact that initial conditions for
Θ in Fourier space depend on θ, but not on the two degrees of freedom of n̂.
As mentioned above, this property is preserved by the isotropic equations of
motion, so that at all times we can study Θ as a function of the arguments
(η,~k, θ) instead of (η,~k, n̂).

5.2.3 Temperature anisotropy in a given direction

The map of temperature anisotropies that we observe today (η = η0) in our
location of the universe (~x = ~o with a proper choice of origin) when looking in
a direction n̂ is represented mathematically by

δT

T̄
(n̂) = Θ(η, ~o,−n̂) (5.35)

(since in a direction n̂, we see photons traveling towards −n̂). Our scope is now
to relate this quantity to perturbations on the point of the last scattering surface
seen in the same direction n̂. This can be done by integrating the Boltzmann
equation along the corresponding line-of-sight.

A good starting point consists in computing the total derivative of the prod-
uct eτ (Θ+ψ) along the trajectory of photons between the last scattering surface
and the observer. The reason for choosing this product rather than just Θ will
become clear in a few lines: the derivative of this term will be easy to simplify,
using the Boltzmann equation.

The total derivative of an arbitrary function F of (η, ~x, n̂) along the trajec-
tory of photons going in a direction n̂ reads

d

dη
F(η, ~x, n̂) = F ′ + dxi

dη

∂F
∂xi

+
dni
dη

∂F
∂ni

. (5.36)

If F is of order one in perturbations, the first two terms on the right-hand side
are also of order one. Instead the last term is of order two, since dni

dη is of

order one (this is clear from the fact that in an unperturbed universe, photons
would travel in straight line with dni

dη = 0). Hence we can drop this term in

first-order perturbation theory, and for dxi
dη we only need to keep the zero-th

order contribution, that can be computed assuming a homogeneous universe:

dxi
dη

= n̂ . (5.37)

The previous relation is just telling that photons are traveling in the direction
n̂ and at the velocity of light: hence, in units where c = 1, d~x2 = dη2. In
summary, the total derivative of F is given at first order by

d

dη
F(η, ~x, n̂) = F ′ + n̂ · ~∇F . (5.38)

Let us now replace the generic function F by

F(η, ~x, n̂) = e−τ(η) (Θ(η, ~x, n̂) + ψ(η, ~x)) . (5.39)

The total derivative of this function reads

d

dη

[
e−τ (Θ + ψ)

]
= e−τ

(
Θ′ + ψ′ + n̂ · ~∇(Θ + ψ)

)
− τ ′e−τ (Θ + ψ) . (5.40)

We now use the linearized Boltzmann equation (5.34) and the fact that τ ′ = −Γ
to write the result as

d

dη

[
e−τ (Θ + ψ)

]
= −e−ττ ′(Θ0 + ψ + n̂ · ~vb) + e−τ (φ′ + ψ′) . (5.41)
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Finally, using the definition of the visibility function g given in Sec. 5.2.1, we
get

d

dη

[
e−τ (Θ + ψ)

]
= g (Θ0 + ψ + n̂ · ~vb) + e−τ (φ′ + ψ′) . (5.42)

We can integrate this relation along the line of sight, i.e. along a straight line
seen by the observer in a given direction−n̂ (since the photons go in the direction
n̂), starting from an early time before recombination (such that e−τ(ηini) ' 0)
until the present time at which photons reach the observer (with by definition
e−τ(η0) = 1). The result reads

(Θ + ψ)|obs =

∫ η0

ηini

dη
[
g (Θ0 + ψ + n̂ · ~vb) + e−τ (φ′ + ψ′)

]
, (5.43)

where the notation |obs means “evaluated at the observer location, along this
line of sight”, i.e. at the coordinate (η0, ~o, n̂).

We can gain further intuition from this equation if we use the instantaneous
decoupling approximation, in which all photons are assumed to decouple pre-
cisely at the time ηdec. In this limit, we can replace the visibility function g by
the Dirac function δD(η−ηdec), and e−τ by the Heaviside function H(η−ηdec).
Note that the approximation g(η) = δD(η − ηdec) is correctly normalized, since
the definition of g implies

∫
dη g(η) = 1. In the instantaneous decoupling limit,

eq. (5.43) reads:

(Θ + ψ)|obs = (Θ0 + ψ + n̂ · ~vb)) |dec +

∫ η0

ηdec

dη (φ′ + ψ′) , (5.44)

where the notation |dec means “evaluated on the last scattering surface, along
this line of sight”, i.e. at the coordinate (ηdec,−rdecn̂, n̂) (here rdec is the co-
moving radius of the last scattering surface). Let us now give the interpretation
of each term in this crucial equation.

First, Θ|obs is the temperature anisotropy measured by the observer in the
direction −n̂, while Θ0|dec is the temperature anisotropy in the point of the last
scattering surface seen in the same direction. If only these two terms where
present, this relation would simply tell us that that the temperature anisotropy
seen today in a given direction is equal to the intrinsic anisotropy in the point
where the observed photons last scattered.

Second, the term n̂ · ~vb|dec stands for the correction to this temperature
coming from by the usual Doppler. Indeed, this correction is caused by the
velocity of the baryon-photon fluid (that we assumed to be tightly coupled until
ηdec) projected along the line of sight.

Next, we expect a correction from gravitational effects. The redshifting and
blueshifting of the photons traveling along gravitational potential fluctuations
should affect the observed temperature anisotropy relatively to the intrinsic one.
It turns out that if the gravitational potential was constant in time (but, of
course, not in space), this effect would be conservative, and would only depend
on ψ|obs−ψ|dec. This explains the second term on the left-hand and right-hand
sides. But if ψ varies in time, the effect is not conservative anymore: intuitively,
the amount of blueshifting and redshifting experienced by photons traveling
across a potential well do not compensate each other if the gravitational well
gets deeper between the time at which the photon enters and leaves the well.
This explains the addition term

∫
dη ψ. A similar effect is caused by dilation

effects along the line-of-sight, and contributes like
∫
dη φ.

Finally, we can drop the second term on the left-hand side, because this
term represents only a tiny isotropic correction to the observed anisotropies.
It is impossible to measure it with the CMB map only, because it is formally
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equivalent to a redefinition of the average temperature T̄ , but only by a tiny
amount of the order of 10−5T̄ .

Let us write once more our result, dropping this unobservable correction,
and grouping the terms in a particular way:

Θ|obs = (Θ0 + ψ)|dec︸ ︷︷ ︸
SW

+ n̂ · ~vb|dec︸ ︷︷ ︸
Doppler

+

∫ η0

ηdec

dη (φ′ + ψ′)︸ ︷︷ ︸
ISW

. (5.45)

The first term is conventionally called the Sachs-Wolfe (SW) term, and includes
the intrinsic temperature term Θ0 and the “gravitational Doppler shift” term ψ
at one point on the last scattering surface. The second term is the conventional
Doppler term. The last term is called the Integrated Sachs-Wolfe (ISW) term
and contains all non-conservative gravitational effects occurring in a universe
with non-static metric fluctuations.

We can gain further insight on the Sachs-Wolfe term. We will try to find
a simpler expression for (Θ0 + ψ)|dec, that applies at least for describing large
angular patterns on CMB maps, i.e. maps smoothed over small scales. For
instance, this expression would describe very well the map of the COBE satellite,
which had limited angular resolution. In more precise terms, we wish to calculate
the contribution to the Sachs-Wolfe term of large wavelengths, which are bigger
than the Hubble radius at the time of recombination.

Let us first focus on the term Θ0|dec. We have seen that on super-Hubble
scales, temperature anisotropies only have a monopole and a dipole component,
related respectively to δγ and θγ . We can be more precise now. We know from
thermodynamics that the local value of the photon density is proportional to
the temperature to the power four. Taking the derivative of log ργ = log T 4, we
get δγ = 4 δT/T̄ , where on the right-hand side the temperature anisotropy is
averaged over all directions n̂: hence δγ = 4Θ0.

Let us now focus on the term ψ|dec. We have seen in Sec. 5.1.4 that on
super-Hubble scales and for adiabatic initial conditions, δγ = 4

3δb. Also, we
know that decoupling takes place at the beginning of matter domination, and
we mentioned at the very end of section 5.1.4 that for super-Hubble scales and
during matter domination, one has −2φ = −2ψ = δtot = δb = δcdm. Hence,
−2ψ = 3

4δγ . Putting all these equalities together, we conclude that on the last
scattering surface,

Θ0 + ψ =
1

4
δγ + ψ = (−1

4
2

4

3
+ 1)ψ = (−2

3
+ 1)ψ =

1

3
ψ . (5.46)

Moreover, on super-Hubble scales, we can neglect the Doppler term, which
can be shown to be important only on sub-Hubble scales. We will see later that
the integrated Sachs-Wolfe term plays a role on large scales, but only a small
role, because φ and ψ are static during most of the evolution after decoupling.
Hence we get an approximation for CMB anisotropies smoothed over small scales
(that was first derived by Sachs and Wolfe in 1967):

Θ|obs, large scales '
1

3
ψ|dec = −1

8
δγ |dec . (5.47)

In this calculation, we have seen that the term ψ wins over the term Θ0, leading
to a minus sign in front of δγ in the above relation. This means that an over-
density on the last scattering surface (δγ > 0), corresponding to a potential well
(ψ < 0), leads to a cold spot in the observed map (Θ < 0). Conversely, a hot
spot corresponds to an under-density. Hence, due to the “gravitational Doppler
shift” effect accounted by the term ψ (often called the Sachs-Wolfe effect), the
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patterns that we observe on CMB map are inverted with respect to intrinsic
fluctuations on the last scattering surface.

Equation (5.45) (and its large-scale approximation (5.47)) are important for
pedagogical purposes, but they have no practical application: indeed, what we
wish to calculate and to compare to observations is a theoretical prediction for
the statistical properties of CMB anisotropies. Hence, we need to compute at
least the CMB two-point correlation function.

5.2.4 Spectrum of temperature anisotropies

Definition. The map of CMB temperature anisotropies can be expanded in
spherical harmonics:

δT

T̄
(n̂) = Θ(η0, ~o,−n̂) =

∑
lm

almYlm(n̂) . (5.48)

Using the Legendre expansion of Θ introduced in eq. (5.33), and some basic
relations between Legendre polynomials and spherical harmonics, it is easy to
express alm as a function of Θl:

alm = (−i)l
∫

d3~k

2π2
Ylm(k̂)Θl(η0,~k) , (5.49)

where we recall that hats denote unit vectors: k̂ ≡ ~k/k. In linear perturbation
theory and assuming Gaussian initial conditions, both Θl and alm are Gaussian
random variables. Using the orthogonality relation of spherical harmonics and
the definitions given in Sec. 5.1.5, we can infer the two-point correlation function
of the alm’s as a function of the power spectrum of Θl, or even better, of the
primordial curvature power spectrum:

〈alma∗l′m′〉 = δKll′δ
K
mm′

[
1

2π2

∫
dk

k
Θ2
l (η0, k)PR(k)

]
. (5.50)

Here δKll′ represents the Kronecker symbol. The fact that 〈alma∗l′m′〉 vanishes for
l 6= l′ or m 6= m′ comes out of the algebra, but physically, it is a consequence
of the homogeneity of the universe — just like the fact that all power spectra
in Fourier space are proportional to δD(~k′ − ~k). Similarily, the fact that the
quantity between brackets is a function of l but not of m is a consequence of
isotropy — like the fact that in Fourier space, power spectra are functions of k
but not ~k.

The quantity between brackets is usually denoted by Cl, and is called the
power spectrum of temperature anisotropies in harmonic space, or the temper-
ature harmonic power spectrum:

Cl ≡
1

2π2

∫
dk

k
Θ2
l (η0, k)PR(k) . (5.51)

In a universe with linear and Gaussian perturbations, the Cl’s encode all the
information concerning the cosmological model describing our universe that is
contained in the CMB temperature map.

It is worth coming back on the meaning of the averaging symbols 〈...〉 in
eq. (5.50). Since the theory of cosmological perturbation is stochastic, the alm’s
should be seen as random numbers, and the average is meant over many realiza-
tions of the theory. In a sense, “a given realization” means “a given universe”,
and the average holds over many universes, all obeying the same cosmological
model, which is encoded in the spectrum Cl.
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Figure 5.1: Observed values of the temperature harmonic spectrum, Cobsl , are
expected to be scattered around the true underlying Cl’s. The scattering, called
cosmic variance, decreases with increasing l.

However, we observe CMB anisotropies in our universe, i.e. in only one re-
alization. CMB maps allow us to measure a definite value of each alm. Hence
the squares |alm|2 are not expected to be equal to Cl, even if we postulated the
right model: there should be some scattering around Cl. This scattering limits
the possibility to find the best theory matching the observations. However we
can reduce considerably the scattering by noticing that for any fixed l, the sta-
tistical distribution of |alm|2 is independent of m (as a consequence of isotropy,
and as expressed by eq. (5.51)). Hence, for an ideal full-sky CMB experiment,
the best estimator of the underlying Cl’s is the average between all observed
coefficients |alm|2 with fixed l,

Cobsl ≡ 1

2l + 1

∑
−l≤m≤l

|aobslm |2 . (5.52)

In a typical universe, this quantity should be closer to the underlying Cl than
a single |aobslm |2. The way to see this mathematically is to consider again the
theoretical (stochastic) alm’s, and to define

Ĉl ≡
1

2l + 1

∑
−l≤m≤l

|alm|2 . (5.53)

By performing averages in the same sense as in equation (5.50), one can easily
show that for Gaussian alm’s,

〈Ĉl〉 = Cl and 〈(Ĉl − Cl)2〉 =
2

2l + 1
C2
l . (5.54)

The first equality shows that the observed Cl’s defined in eq. (5.52) are unbiased
estimators of the true underlying Cl’s. The second equality gives the typical
scattering between the theory and the observations. Since for larger l we perform
an average over more values of m, the relative scattering decreases. This is the
case with true data points, which are distributed qualitatively like in Fig. 5.1.
This scattering is called cosmic variance. It can be seen as a theoretical error:
because of cosmic variance, we cannot reconstruct the underlying model with
infinite precision, even if we have infinitely precise observations. Cosmic variance
is large for small l’s, meaning that the shape of the true underlying Cl’s will
always be poorly known at low l.

Line-of-sight integral in Fourier space. According to equation (5.51), for a given
primordial spectrum, the shape of the CMB spectrum Cl depends on the square
of the transfer function Θl(η0, k). We would like to understand this shape at
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least qualitatively. In real space, we did learn a lot on the behavior of Θ(η, ~x, n̂)
by using the line-of-sight integral approach presented in section 5.2.3. A similar
approach can be worked out in Fourier and harmonic space, i.e. for the variable
Θl(η, k). We do not present here the intermediate steps. The final result shows
many similarity with its real space counterpart, eq. (5.43). It can be decomposed
into:

Θl(η0, k) =

∫ η0

ηini

dη ST (η, k) jl(k(η0 − η)) ,

ST (η, k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′︸ ︷︷ ︸
Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

. (5.55)

We see that Θl(η0, k) is given by the convolution of spherical Bessel functions
jl(x) with a function ST (η, k), called the temperature source function, which
contains the usual three terms: Sachs-Wolfe, Doppler, and Integrated Sachs-
Wolfe. Like in the previous section, we can use the instantaneous decoupling
approximation, integrate the Doppler term by part, and write Θl(η0, k) as:

Θl(η0, k) ' [Θ0(ηdec, k) + ψ(ηdec, k)] jl(k(η0 − ηdec))

+k−1θb(ηdec, k) j′l(k(η0 − ηdec))

+

∫ η0

ηdec

dη [φ′(η, k) + ψ′(η, k)] jl(k(η0 − η)) (5.56)

(note that in the second line, i.e. in the Doppler term, the prime stands for the
derivative of the function jl(x) with respect to its argument, not with respect
to conformal time). This approximate result can be plugged into eq. (5.51) to
obtain the final spectrum Cl. We see that each Cl can be decomposed into six
terms: the power spectrum CSW

l of the SW term, coming from the first line
of eq. (5.56) squared, that of the Doppler term, coming from the second line
of eq.(5.56) squared, that of the Integrated Sachs-Wolfe term, coming from the
third line of eq. (5.56) squared, and finally the three cross-spectra involving each
pair of terms.

For large values of l, the spherical Bessel functions jl(x) and j′l(x) are very
peaked near x ' l. Hence, for the Sachs-Wolfe and Doppler contributions to the
spectrum Cl, the integral over k in eq. (5.51) will pick up mainly modes with
k(η0 − ηdec) ' l. This shows that the SW contribution to Cl is given by the
product of the primordial spectrum with the squared transfer function (Θ0 +ψ)
at a given value of η and k:

CSW
l ∼ [Θ0(ηdec, k) + ψ(ηdec, k)]

2 PR(k) , k ' l

(η0 − ηdec)
(5.57)

(for simplicity, we did not write numerical factors and powers of l or k in front
of this expression). In other words, CSW

l depends on the power spectrum of the
perturbation (Θ0+ψ), evaluated at the time of decoupling, and for wavenumbers
in the vicinity of k = l

(η0−ηdec) ,

CSW
l ∼ 〈|Θ0 + ψ|2〉(η,k)'(ηdec, l/(η0−ηdec)) . (5.58)

We reached this result with mathematical arguments, but it has a very simple
geometrical interpretation, illustrated in Fig. 5.2. The spectrum Cl encodes
the correlation between structures on CMB maps seen under an angle θ = π/l.
This angle subtends a given physical scale on the last scattering surface, namely
θ× da(zdec), where da(z) is the angular diameter distance to objects of redshift
z. Since the Sachs-Wolfe term (Θ0+ψ) contributes to the temperature map only
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Figure 5.2: A multipole l refers to structures seen on the last scattering surface
under an angle θ = π/l. These structures are seeded by Fourier modes with a
half wavelength λ

2 = πadec

k .

at the time η ' ηdec, the spectrum CSW
l should depend on the power spectrum

of the Sachs-Wolfe term 〈|Θ0 + ψ|2〉 at that time, and for a wavenumber such
that

λ

2
=
πa(ηdec)

k
= θ da(zdec) . (5.59)

The reason for which λ has been divided by two is that for spherical harmon-
ics, θ = π/l is the angle between a maximum and a minimum, while for a
Fourier mode the distance between a maximum and a minimum is one half of
the wavelength, λ

2 = πa
k . eq. (5.59) leads to

a(ηdec)

k
=
da(zdec)

l
. (5.60)

We recall that in a flat FL universe the angular diameter distance is given by

da(z) = a(t(z))

∫ t0

t(z)

dt

a
, (5.61)

t(z) being the proper time at which an object seen today with a redshift z emit-
ted light. The conformal time η(z) is defined similarly. In terms of conformal
time,

da(z) = a(η(z))

∫ η0

η(z)

dη = a(η(z)) [η0 − η(z)] , (5.62)

and for the case of a point located on the last scattering surface,

da(zdec) = a(ηdec) (η0 − ηdec) . (5.63)

Hence, eq. (5.60) can be written as

1

k
=

(η0 − ηdec)

l
, (5.64)

which is the same relation between k and l as in Eqs. (5.57, 5.58). In those
equations, we implicitly performed a small-angle approximation. For large an-
gles (small l’s), it is inaccurate to say that a given angle/mutipole corresponds
to a single Fourier mode on the last-scattering surface, and it is important
to keep the spherical Bessel function of eq. (5.55) and the integral over k of
eq.(5.51). In summary, Eqs. (5.57, 5.58) represent the instantaneous decoupling
and small-angle limit of the true power spectrum CSW

l .
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Figure 5.3: Initial over-densities in the early universe propagate in the form of
wavefronts. The distance travelled by any wavefront at a given time is given
by the sound horizon in the photon-baryon fluid. Here, we represent initial
over-densities as spherical patterns at a given scale, while in the real universe
primordial over-densities result from a superposition of structures on all scales.

Using the same two limits, a similar discussion can be carried for the Doppler
and Integrated Sachs-Wolfe power spectra. The Doppler term depends on the
power spectrum of the baryon velocity divergence evaluated roughly at the same
time and scale,

CDoppler
l ∼ 〈|θb|2〉(η,k)'(ηdec, l/(η0−ηdec)) , (5.65)

while the ISW term can be written approximately in terms of the integral

CISW
l ∼

∫ η0

ηdec

dη (η0 − η) 〈|φ′ + ψ′|2〉(η,k)'(η, l/(η0−η)) . (5.66)

Again, for simplicity, we did not write numerical factors and powers of l and k
in front of these expressions.

In the next sections, we will infer the shape of the full spectrum Cl from
that of the three power spectra appearing in Eqs. (5.58, 5.65, 5.66):

SW : 〈|Θ0 + ψ|2〉 at (η, k) ' (ηdec, l/(η0 − ηdec)) ,

Doppler : 〈|θb|2〉 at (η, k) ' (ηdec, l/(η0 − ηdec)) ,

ISW : 〈|φ′ + ψ′|2〉 for all (η, k) ' (η, l/(η0 − η)) .

Before entering into details, we can make a guess. Even if the primordial spec-
trum PR(k) is smooth, the temperature spectrum Cl should contain some struc-
ture. Indeed, as illustrated by Fig. 5.3, any primordial over-density is expected
to propagate. In Fig. 5.3, we represented naively the primordial over-densities
with little dots, giving rise to spherical wavefronts at later time. In the real
universe, wavefront patterns are less visible, because primordial over-densities
result from a superposition of structures on all scales. However, there is al-
ways a characteristic scale in this problem: namely, the distance by which a
wavefront travels between some time in the primordial universe and the time
of photon decoupling. This distance, called the sound horizon at decoupling
ds(ηdec), obeys

ds ≡ a
∫ t

tini

csdt

a
= a

∫ η

ηini

csdη , (5.67)

where cs is the sound speed in the photon-baryon fluid (in units of the speed
of light). Two points on the last scattering surface separated by this distance
should be partially correlated, since density waves have propagated from one
point to the other. Hence, in angular space, the two-point correlation function of
CMB anisotropies should exhibit a characteristic feature for angular scales cor-
responding to the sound horizon at decoupling, θ ∼ ds(ηdec)/da(zdec). Similarly,
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the harmonic power spectrum Cl should exhibit a feature at the corresponding
scale, l ∼ π/θ ∼ π da(zdec)/ds(ηdec), and also for all the harmonics of this scale.
We will get a confirmation of this in the next section.

5.2.5 Acoustic oscillations

As long as electrons, baryons and photons are tightly coupled, they form an
effective single fluid in which density waves propagate at the sound speed

c2s =
δpγ + δpb

δργ + δρb
(5.68)

(the density and pressure of electrons is always negligible with respect to that
of photons). The density fluctuation δx of each species x = γ, b can be inferred
from the local value of the equilibrium temperature. The fact that ρb ∝ T 3 and
ργ ∝ T 4 implies δγ = 4

3δb, and tight coupling imposes θγ = θb, as we already
saw in Sec. 5.2.2. We can simplify the expression of the sound speed, using also
the fact that |δpb| � |δpγ |. The result reads

c2s =
1

3(1 +R)
, R ≡ 4ρ̄b

3ρ̄γ
∝ a . (5.69)

It is possible to derive a simple equation of motion for the photon temperature
fluctuation Θ0(η, ~x) in the tightly-coupled regime:

Θ′′0 +
R′

1 +R
Θ′0 + k2c2s Θ0 = −k

2

3
ψ +

R′

1 +R
φ′ + φ′′ . (5.70)

This equation follows from the combination of the continuity and Euler equa-
tions for photons and baryons. Given that R is proportional to the scale factor,
we could replace R′ by (a′/a)R = aHR. The second term on the left-hand
side is a damping term, increasing with the contribution of baryons to the total
energy of the fluid. The third term accounts for pressure forces in the effective
fluid. The first term on the right-hand side accounts for the gravitational force,
and the last two terms for dilation effects.

This equation would be that of a simple harmonic oscillator if R was a
constant (no friction term, constant sound speed) and in absence of gravitational
source terms. Then, the solution would be of the form

Θ0 = Θini cos(kcsη + ϕ) , (5.71)

with two constants of integration (Θini, ϕ). We know that for adiabatic initial
conditions and in the Newtonian gauge, photon density/temperature fluctua-
tions should be constant in the super-Hubble limit, kη � 1: this fixes the phase
to ϕ = 0. In the opposite limit, this solution corresponds to the propagation of
acoustic oscillations. Actually, the limit between the constant and oscillatory
regime is not set by the value of kη, but by that of kcsη. In fact, the condition
kcsη � 1 is equivalent to λ� ds, where λ is a physical wavelength (λ = 2πa/k),
and ds is the physical sound horizon, given in the case of a constant sound speed
by:

ds = a

∫ η

ηini

csdη ' acsη (5.72)

(assuming η � ηini). Hence, the phase kcsη of the cosine stands for the ratio
2πds/λ. Modes start oscillating when their wavelength becomes smaller than
the sound horizon, and later on, the number of oscillations is given by the ratio
between these two scales.
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Figure 5.4: Different regions in (k, η) space, corresponding to qualitatively dif-
ferent behaviors for photon (and baryon) perturbations.

In reality, R grows with time (and crosses one roughly around the time of
decoupling). In addition, the gravitational source terms in eq. (5.70) can play
a role in some regimes. Let us describe qualitatively the evolution of Θ0 in the
different regions in (k, η) space shown in Fig. 5.4. In this figure, the horizontal
axis corresponds to wavenumbers k (large wavelengths are on the left), and the
vertical axis to conformal time, flowing from top to bottom. The super-Hubble
and sub-Hubble regions are separated by the solid diagonal line corresponding
to k = aH (equivalent to kη = 1 during radiation domination). From top to
bottom, the horizontal lines correspond to the time of equality between radiation
and matter, to the time of photon decoupling, and to the time today. The upper
dashed line separates wavelengths bigger/smaller than the sound horizon in the
baryon-photon fluid before decoupling (after decoupling, this notion does not
make sense anymore). As we have just seen, this limit corresponds to λ = ds, or
(up to a factor 2π) to k = (a/ds). At early times, cs = 1/

√
3, and this condition

reads kη =
√

3. Just before decoupling, R becomes large, cs goes to zero, and
the comoving sound horizon (ds/a) becomes asymptotically constant, explaining
the shape of the upper dashed line. Finally, the lower dashed line separates
wavelengths bigger/smaller than the diffusion length defined in section 5.2.1:
this line corresponds to k = 1/rd, where rd is given in first approximation by
eq. (5.26).

The evolution of Θ0 in the super-Hubble region is trivial: as long as kη �
1 — and a fortiori kcsη � 1 — the fluctuation Θ0 is frozen, and remains
approximately equal to its initial value.

The region marked with a 1© in the figure corresponds to modes that are
crossing the sound horizon before decoupling. This is precisely the region in
which gravitational source terms are important. They shift the zero point of
oscillations, and boost their amplitude (due to gravitational forces and dilution
effects). This happens during a limited amount of time, because the metric
fluctuations quickly decay inside the sound horizon during radiation domination,
making the gravitational source terms negligible. An approximation for the zero-
point of oscillations can be found by setting Θ′′0 and Θ′0 to zero in equation (5.70),
and by keeping only the first gravitational term:

Θequilibrium
0 = − 1

3c2s
ψ = −(1 +R)ψ . (5.73)
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Figure 5.5: Transfer functions at the time of decoupling.

Since the gravitational potential is non-zero on super-Hubble scales (we have
seen that for adiabatic initial conditions −2ψ = δtot), the equilibrium point
is shifted away from zero on those scales. It reaches asymptotically zero on
sub-sound-horizon scales.

Region 2© corresponds to wavelengths smaller than the sound horizon during
radiation domination. In this regime, the metric fluctuations have decayed, so
the source term in eq. (5.70) can be neglected. The friction term can also be
neglected, because during radiation domination, R � 1. Finally the effective
mass k2c2s is constant in time because R� 1 implies c2s = 1/3. Hence we are in
the simple case discussed before, and the solution is proportional to cos(kcsη),
corresponding to stationary oscillations, symmetric around Θ0 = 0.

Region 3© refers to wavelengths smaller than the sound horizon during the
intermediate stage between the time of equality and that of photon decoupling.
In this region, the metric perturbations have decayed, but R cannot be neglected
(baryons and photons contribute to the total energy density with the same order
of magnitude). Hence the oscillator equation has a non-negligible friction term
(increasing with time), and a time-varying effective mass (decreasing with time).
The solution of the equation corresponds to damped oscillations. Physically,
this damping is caused by the increasing inertia and decreasing pressure of the
baryon-photon fluid when the energy density of non-relativistic baryons takes
over. Using the WKB formalism, one can find a good analytic approximation
to these damped oscillations:

Θ0 = Θini (1 +R)−1/4 cos(kcsη) , (5.74)

Region 4© refers to modes with smaller wavelength than the diffusion scale
in the photon-baryon fluid. We have defined this scale in section 5.2.1. At early
times, in the tightly-coupled limit, the mean free path of particles in the fluid is
negligible, and cosmologically interesting scales are all well above the diffusion
length. At the approach of decoupling, the diffusion length suddenly increases,
and encompasses most of sub-sound-horizon wavelengths. In this regime, the
oscillator equation (5.70) does not apply anymore, because we cannot describe
baryons and photons in terms of a perfect fluid. Perturbations are then strongly
damped, since diffusion tends to average out any small-scale fluctuation.

After describing these different regions, we are ready for understanding the
qualitative behavior of the various relevant transfer functions, evaluated at the
time of decoupling. Figure 5.5 shows the transfer functions Θ0(ηdec, k) (solid
line), ψ(ηdec, k) (upper dotted line) and Θ′0(ηdec, k) (middle dotted line) as a
function of log k. For simplicity, we neglect the role of the anisotropic stress gen-
erated by neutrinos (and to a lesser extent by photons near decoupling time).
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Hence we can assume φ = ψ at all times. For scales above the sound hori-
zon (kcsη � 1), the transfer functions are constant: indeed we know that, on
those scales and in the Newtonian gauge, density and metric fluctuations are
frozen. Adiabatic initial conditions impose −2ψ = δtot ' δb ' 3

4δγ ' 3Θ0.
The opposite sign of Θ0 and ψ reflects the fact that an over-density corresponds
to a temperature excess and a gravitational potential well (and vice-versa).

We remember that transfer functions are all normalized to R(~k) = 1 (see sec-
tion 5.1.5): this corresponds to a negative δγ (and Θ0) and to a positive ψ, like
in the figure.

Because of the decay of metric fluctuations inside the Hubble radius, the ψ
curve smoothly decreases and tends towards zero in the small wavelength limit.
The behavior of Θ0 is more complicated. Modes which are just crossing the
sound horizon near η = ηdec are experiencing the boost caused by gravitational
source terms in eq. (5.70): this explains the first bump in the solid line. For
smaller wavelengths, we see oscillatory patterns corresponding to acoustic oscil-
lations. Smaller wavelengths crossed the sound horizon earlier, and had more
time for oscillating before decoupling. The maxima observed at the time of de-
coupling correspond to modes that could experience 0.5, 1, 1.5, 2, ..., periods of
oscillations before that time. The zero point of oscillations follows −(1 + R)ψ,
represented on the figure with a dashed line: this zero point reaches zero well in-
side the sound horizon. The amplitude of the oscillations is maximal for the first
oscillatory pattern, i.e. for modes that crossed the sound horizon very recently.
The second oscillatory pattern is reduced by the fact that those modes stayed
for a longer time inside the sound horizon during the matter dominated regime,
and experienced more damping due to baryons. The third and higher oscilla-
tory patterns are reduced even more by diffusion damping just before photon
decoupling. Temperature fluctuations on very small wavelengths are completely
suppressed by photon diffusion.

Figure 5.5 also shows qualitatively the behavior of the time derivative Θ′0(ηdec, k),
which exhibits oscillations that are out of phase with respect to those of Θ0(ηdec, k).
This will be important in a few paragraphs, when discussing the Doppler effect.

Now that we understand qualitatively the behavior of the metric and photon
transfer functions, we can go back to the decomposition of the CMB temperature
spectrum Cl in three terms (Sachs-Wolfe, Doppler and integrated Sachs-Wolfe)
discussed in section 5.2.5.

Sachs-Wolfe contribution. We have seen that the Sachs-Wolfe contri-
bution to Cl is approximately given by the power spectrum of the combination
(Θ0 +ψ) at η = ηdec, with a correspondence between k and l given by eq. (5.64).
We know that this power spectrum is given by the product of the primordial
spectrum PR(k) (that we can choose to be scale-invariant in first approxima-
tion) by the square of the transfer function (Θ0 +ψ)2. The qualitative behavior
of the latter has no more secrets for us. We can pick up the solid and upper
dotted lines in figure 5.5, add them up, and square the result. The result is
shown in figure 5.6 as a function of log k. For modes with kc2sη � 1, we see
a flat plateau: there, our previous calculation of the Sachs-Wolfe effect would
apply (this part of the curve is actually called the Sachs-Wolfe plateau). We
then observe a series of peaks. Due to the shift of the zero-point of oscilla-
tions given by −(1 +R)ψ for Θ0, and hence by −Rψ for the Sachs-Wolfe term
(Θ0 + ψ), there is an asymmetry between the first few odd and even peaks,
with odd peaks being enhanced. Moreover the overall amplitude of the peaks
is suppressed in the large k limit by diffusion damping. A bit of algebra would
show us that the envelope of the peaks is given in first approximation by the
function exp[−(k/kd)2], where kd is the diffusion wavenumber, related to the
diffusion comoving scale of eq. (5.26) by kdrd = 1.
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Figure 5.6: Squared transfer functions at the time of decoupling.

Figure 5.7: Contribution to the Cl’s from the SW and Doppler terms.

Doppler contribution. Next, we know that the Cl’s receive a second con-
tribution from the Doppler effect, related to the power spectrum of θb, which
is equal to θγ until baryon and photons decouple from each other. It turns out
that the photon velocity divergence θγ is itself related to the time derivative of
the temperature fluctuation Θ0. At a very qualitative level, we can infer the
Doppler contribution from the shape of the transfer function Θ′0(ηdec, k). This
contribution is null for scales above the sound horizon, since in this regime there
are no oscillations and no significant dynamics in the fluid. On smaller scales,
the Doppler contribution has oscillatory patterns, that are out of phase with re-
spect to those of the Sachs-Wolfe term. The Doppler contribution is represented
schematically as a dotted line in figure 5.6.

We can now sum up the Sachs-Wolfe and Doppler contributions. Also, we
can transpose our results for power spectra as a function of k in terms of Cl’s
as a function of l. We have already seen in section 5.2.5 that there is a map-
ping betwwen the two, at least in the small-angle and instantaneous decou-
pling approximation, with a correspondence between values of k and l given by
eq. (5.64). The result is shows in figure 5.7. Note that the vertical axis stands
for l2Cl, for the following reason. If the primordial spectrum was scale invari-
ant (PR(k) = constant) and the transfer functions were flat (as it is the case
for large wavelengths/small l’s), the quantity l(l + 1)Cl would also be flat and
independent of l. This would follow from eq. (5.57) if we had been more carefull
in keeping all the factors. It is convenient to plot l2Cl or l(l + 1)Cl instead of
Cl, in order to display a roughly constant curve, just modulated by acoustic
oscillations and diffusion damping.

Diffusion damping effect. In Fig. 5.7, we can identify all the features
mentioned before: the flat Sachs-Wolfe plateau, the series of oscillations with
enhanced odd peaks, and the exponentially decaying envelope of the peaks for
large l. The envelope is now given by exp[−(l/ld)2], where ld is the diffusion
multipole, related to the diffusion angle by ld = π/θd. The diffusion angle is
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Figure 5.8: Regions in (k, η) space where metric fluctuations are expected to
vary with time (giving rise potentially to an ISW effect after decoupling).

related to the diffusion scale rd by the usual angular diameter distance relation,

θd da(ηdec) = λd = a(ηdec)rd(ηdec). (5.75)

At this point, we are almost done with the qualitative description of the
CMB temperature spectrum Cl. We only missed the integrated Sachs-Wolfe
contribution, and the effect of reionization.

Integrated Sachs-Wolfe contribution. We have seen that the integrated
Sachs-Wolfe effect is given by an integral over (ψ′ + φ′) between photon decou-
pling and today. In fact, (ψ′ + φ′) remains vanishingly small in a large part
of the space (k, η). In Figure 5.8, we hatched all the regions in (k, η) space
where metric fluctuations are expected to vary with time. Let us discuss these
different regions.

Before photon decoupling, we know that metric fluctuations decay inside the
sound horizon. Instead, in the Newtonian gauge, they remain frozen outside the
Hubble radius, except near times at which the equation of state of the universe
changes: namely, at the time of equality between radiation and matter.

Let us now discuss the variation of metric perturbations after photon de-
coupling (this is the relevant epoch for the ISW effect). Deep inside the matter
dominated regime, one can show that metric fluctuations are static, even inside
the Hubble radius (at least within linear perturbation theory). We will justify
this result in section 5.3.2. Hence in figure 5.8 there are no hatches during
matter domination on whatever scales. Note however that at the beginning of
matter domination, it takes some time for sub-sound-horizon metric fluctuations
to freeze around a constant value: hence the hatches continue below the line
corresponding to the time of equality, and extend till the line corresponding to
photon decoupling.

Later on, during the Λ (or dark energy) dominated regime, the equation of
state of the universe changes again, so metric fluctuations vary on all scales, like
at the time of equality. A simple calculation based on Einstein equations would
show that metric fluctuations are damped during this stage.

In summary, contribution to the integrated Sachs-Wolfe effect can only come
from two regions:

• just after photon decoupling, on sub-sound-horizon scales, and

• during Λ domination, on all scales.

These two distinct contributions are usually called the Early Integrated Sachs-
Wolfe (EISW) and Late Integrated Sachs-Wolfe (LISW) effects. One can show
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Figure 5.9: ISW contribution to the temperature spectrum.

Figure 5.10: Impact of reionization on the temperature spectrum.

that both effects decrease with wavelength, for geometrical reasons. Hence the
EISW effect is maximal for scales crossing the sound horizon just at the time of
photon decoupling, while the LISW effect is maximal for the largest observable
scales today. In multipole space, this means that the EISW effect contributes
mainly to the scale of the first peak, i.e. to l ∼ 200, while the LISW contributes
mainly to the smallest multipoles l = 2, 3, 4, etc. The two ISW contributions are
drawn on figure 5.9. The EISW effect enhances the first peak, while the LISW
effect tilts the Sachs-Wolfe plateau even if the primordial spectrum is exactly
scale invariant.

Reionization effect. The last effect that we omitted to describe is that of
reionization. We have seen in section 5.2.1 that at small redshift (z ' 10), the
reionization of the universe produces a small secondary bump in the visibility
function, corresponding physically to a small probability for CMB photons to
rescatter at late times. This rescattering will tend to smooth out any tempera-
ture anisotropy pattern. Hence, reionization lowers the overall amplitude of the
C ′l , but only a small amount (by approximately 15%). Note that the suppres-
sion of power is not uniform over the whole multipole range: smoothing effects
cannot reach the largest observable scales (corresponding to the smallest values
of l). Hence the effect of reionization is step-like shaped, and saturates for l of
the order of 40 or so (as illustrated on figure 5.10).

5.2.6 Parameter dependence of the temperature spectrum

We summarized in the last section the various physical effect contributing to
the shape of the CMB temperature spectrum Cl. We will now recapitulate the
effect of the various cosmological parameters on the Cl’s, within the framework
of the minimal ΛCDM model.
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This model assumes zero spatial curvature, and a power-law primordial spec-
trum of scalar perturbations:

PR(k) = As(k/k∗)
ns−1 , (5.76)

where k∗ is an arbitrary fixed pivot scale, As is the spectrum amplitude at
this scale, and ns is called the scalar tilt (the exponent is chosen to be ns − 1
rather than just ns for historical reasons; with such notations, a scale-invariant
spectrum corresponds to ns = 1).

We recall that the Hubble parameter today, H0, can be expressed in terms
of a dimensionless reduced Hubble parameter h:

H0 ≡ 100h km.s−1.Mpc−1 (5.77)

The physical energy density of a given component x today can be expressed in
terms of a dimensionless parameter ωx ≡ Ωxh

2:

ρ0
x = Ωxρ

0
crit = Ωx

3H2
0

8πG
= β ωx (5.78)

where β = 3(H0/h)2

8πG is a fixed number, with the dimension of an energy per
volume.

The six free parameters of the minimal ΛCDM model can be chosen to be

{As, ns, ωb, ωm,ΩΛ, τreio}, (5.79)

where τreio is the optical depth to recombination, which is non-zero because of
reionization in the recent universe. At first order, this is the only parameter
that one needs to introduce for describing reionization. For a very accurate de-
scription, one should introduce other parameters specifying the full reionization
history, but these extra parameters are very difficult to probe experimentally.
Hence, they are usually not specified.

The above parameter basis specifies the baryon density ωb, the total non-
relativistic (baryons + CDM) matter density ωm, and the fractional density of
cosmological constant ΩΛ. The photon density is implicitly assumed to match
the measured value of the CMB temperature (T = 2.725 K implies ωγ ∼ 2.10−5).
Neutrinos are assumed to be still relativistic today, with an abundance relative
to photons given by the prediction of the standard neutrino decoupling model4.
Finally, we did not include the parameter H0 (or h) in the parameter basis
(5.79). Given that we are assuming a flat universe, h can be inferred from other
parameters in (5.79): h =

√
ωm/(1− ΩΛ).

The parameters basis (5.79) is just one particular choice. Many other bases
would be valid, for instance, {As, ns, ωb, ωcdm, H0, τreio}. The choice of (5.79) is
dictated by purely pedagogical considerations: we will show that the shape of
the CMB spectrum can easily be related to these parameters.

We summarize in Fig. 5.11 the evolution of background densities in the
minimal ΛCDM model. The normalization of the radiation density ρr is fixed
by the CMB temperature and by the standard neutrino decoupling model. The
normalization of the matter density ρm and of the cosmological constant density
ρΛ is given respectively by the parameters ωm and ΩΛ. The scale factor at
radiation/matter equality is given by

ρr = ρm =⇒ ωr

(
a0

aeq

)4

= ωm

(
a0

aeq

)3

=⇒ aeq

a0
=

ωr
ωm

. (5.80)

4In this course, for simplicity, we do not discuss the effect of neutrinos; this effect is far
from being negligible, but since we consider the abundance of neutrinos as fixed, and their
mass as irrelevant, we can explain the effect of other free parameters without taking neutrinos
into account.
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Figure 5.11: In the minimal ΛCDM model, evolution of the background density
of radiation, matter and cosmological constant as a function of the scale factor.

Since ωr is considered as fixed, the redshift of equality is controlled by ωm only.
The scale factor at matter/Λ equality is given by

ρm = ρΛ =⇒ ωm

(
a0

aΛ

)3

= ΩΛh
2 =⇒ aΛ

a0
=

(
1− ΩΛ

ΩΛ

)1/3

, (5.81)

so it is controlled by ΩΛ only. The scale factor at photon decoupling has a small
(logarithmic) dependence on ωb, that we can neglect — we will consider that
decoupling takes place at a fixed temperature, and hence a fixed scale factor
and redshift.

Among the various physical effects described in the previous section, we can
identify eight independent leading effect. We summarize them in Table 5.1, and
show by which parameters they are governed. Below, we give more details on

Table 5.1: Independent leading effects controlling the shape of the CMB tem-
perature power spectrum Cl in the minimal ΛCDM model.

Effect Relevant quantity Parameter

(C1) Peak scale θpeak =
π

lpeak
∼ ds|dec

da|dec

← ωm, ωb

← ΩΛ, ωm

(C2) Odd/even peak amplitude ratio R|dec ωb

(C3) Amplitude of rirst peaks adec
a0

ωm

(C4) Damping envelope θd =
π

ld
=
adecrd|dec

da|dec

← ωm, ωb

← ΩΛ, ωm

(C5) Global amplitude PR(k∗) As

(C6) Global tilt d logPR
d log k

ns

(C7) Additional plateau tilting (LISW) aΛ
a0

ΩΛ

(C8) Amplitude for l ≥ 40 only τreio τreio

these effects.
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(C1) Since all peaks in multipole space correspond to the harmonics of a sin-
gle correlation length in real space, the scale of the peak is controlled (in
good approximation) by a single number lpeak. It depends on the ratio
of the sound horizon at decoupling by the angular diameter distance to
decoupling. The first quantity depends on the evolution prior to decou-
pling, and in particular on the expansion history and sound speed. Hence
it depends on ωm (governing the time of equality) and ωb (governing c2s
as a function of a). The second quantity depends on the expansion and
geometry of the universe after decoupling, i.e. on ΩΛ and H0, or in our
parameter basis ΩΛ and ωm.

(C2) When studying the SW contribution to the Cl’s, we have seen that the
asymmetry between the amplitude of odd and even peaks depends on the
shift of the zero-point of acoustic oscillations by a term −Rψ. The value
of the ratio R at decoupling is governed in our parameter basis by ωb.

(C3) A shift in the time of radiation/matter equality affects the amplitude of
all peaks for two reasons: it controls the duration of the intermediate
stage between equality and decoupling, during which: (i) modes crossing
the sound horizon are not enhanced by a gravitational boosting effects as
much as during radiation domination (since ψ = φ does not strongly decay
after sound crossing during MD), and (ii) the EISW effect can take place.
Both effects go in the same direction. If equality takes place later, there is
less time between equality and decoupling. Then, more modes experience
gravitational boosting, and some peaks are higher (typically the 2nd and
3rd). The metric fluctuations are also less stabilized at decoupling, and
the EISW is larger (hence the first peak is increased even more).

(C4) Diffusion damping near the time of recombination controls the envelope of
the peaks (the function exp[−(l/ld)2] suppresses them, starting essentially
from the third one). It depends on the ratio of the damping scale at
decoupling by the angular diameter distance to decoupling. The first
quantity depends on the Thomson scattering rate prior to decoupling, and
in particular on ωm (governing the value of conformal time at equality)
and ωb (governing the ionization fraction as a function of a). The second
quantity depends on the expansion and geometry of the universe after
decoupling, i.e. on ΩΛ and H0, or in our parameter basis ΩΛ and ωm.
The parameter dependence of effects (C1) and (C4) could be thought to
be similar: in fact, it is not, because the sound horizon and the diffusion
scale depend on very different combinations of ωm and ωb.

(C5) The global amplitude of the Cl’s depends trivially on that of the primor-
dial spectrum, fixed by As.

(C6) The global slope of the Cl’s depends trivially on the tilt of the primordial
spectrum, fixed by ns.

(C7) The LISW effect tilts the Sachs-Wolfe plateau (on top of the effect of
ns). The plateau is more lifted at small l’s if Λ domination is longer, i.e.
if metric fluctuations decay during a larger amount of time. Hence this
effect is enhanced by large values of ΩΛ.

(C8) The Cl amplitude is suppressed if reionization takes place early, i.e. if
τreio is large, but without affecting the largest scales (small l’s).

We see that in the framework of the minimal ΛCDM model, six parameters
control eight distinct physical effects with different impacts on the Cl’s. This
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suggests that an accurate enough measurement of the temperature spectrum
is sufficient for fixing the six parameters of the cosmological model describing
our universe, at least if the data is consistent with ΛCDM. This conclusion is
roughly correct, but must be refined with some words of caution. Indeed, we
remember that for small l’s, cosmic variance is large, so that the average Cl’s
of the “true model” describing our universe cannot be measured precisely, even
in the case of an ideal experiment. However, two of the previous effects (C1) -
(C8) can only affect the smallest multipoles:

• effect (C7) affects only the Sachs-Wolfe plateau,

• a combination of effects (C5) and (C8), corresponding to the product
e−2τreioAs, controls the global amplitude for l � 40, but a variation of
both τreio and As with the previous product being kept fixed would only
affect the smallest multipoles.

Hence, the measurement of the CMB temperature spectrum is sufficient for con-
straining the six parameters of the ΛCDM model, but with a relatively large
error bar for ΩΛ and for a particular combination of τreio and As. In the next
section, we will say a few words on the measurement of CMB polarisation, which
allows to better constrain reionization: polarisation data allow to remove the
degeneracy between τreio and As. Instead, the error bar on ΩΛ can only be
improved by combining CMB data with other cosmological probes (e.g. super-
novae luminosity or large scale structure data).

5.2.7 A quick word on polarisation (not treated)

The Bolztmann equation presented in eq. (5.34) was a bit over-simplified. We
did as if the only degree of freedom describing photons with a blackbody spec-
trum was their temperature. In fact, photons are described by more degrees
of freedom, called the Stokes parameters, involving also their polarisation. In
eq. (5.34), the Thomson scattering rate was integrated over polarisation param-
eters, but in reality some polarized correction terms are present.

Well before decoupling, photons remain unpolarized on average. Indeed, we
have seen in section 5.2.2 that, throughout the tight-coupling regime and in
the frame comoving with the fluid (i.e. such that θb = θγ = 0), the photon
temperature is isotropic in every point. This isotropy (resulting from frequent
interactions) implies that photons acquire no net polarisation patterns when
they scatter over electrons.

Instead, at the approach of decoupling, when Thomson scattering becomes
inefficient, the photon temperature is no longer isotropic in the frame comoving
with the electrons. This means that a given electron will scatter simultaneously
some hotter photons coming from one direction, and some colder photons coming
from another direction. What is important for polarisation is the quadrupolar
component of the the temperature distribution in each point. This component
starts from zero and grows at the approach of decoupling. When it becomes
significant, photon scattering leads to a net linear polarisation. Hence, today,
CMB photons have a different polarisation amplitude and orientation in each
direction of the sky.

The map of CMB temperature anisotropies is a scalar map: it can be rep-
resented with a one-dimensional color code. The map of CMB polarisation can
be represented with sticks of different size and orientation in different points of
the map. Roughly speaking, the size and orientation of the sticks can be related
to the magnitude and orientation of the quadrupole anisotropy in each point of
the last scattering surface. Since these quadrupolar patterns reflect variations
of temperature in the region of the last scattering surface, it is clear that there is
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Figure 5.12: Typical shape of the temperature and E-type polarisation power
spectra in a ΛCDM model without (solid lines) or with (dotted lines) reioniza-
tion of the universe at small redshift.

a non-zero correlation between temperature and polarisation maps. Still, both
maps contain some independent information.

In general, a vector field can be decomposed into a gradient and a curl
component, like the electric and magnetic fields. Similarly, CMB polarisation
maps can be expanded in two scalar maps called, by analogy, E-type and B-type
polarisation maps.

One can show that primordial scalar perturbations can produce both tem-
perature anisotropies and E-type polarisation anisotropies. If the early universe
only features Gaussian scalar perturbations on cosmological scales, all the infor-
mation contained in CMB maps is encoded in the temperature power spectrum
CTTl , the E-type polarisation power spectrum CEEl , and the cross-correlation
power spectrum CTEl . The later really contains additional independent infor-
mation, because polarisation patterns are only partially correlated with tem-
perature patterns (in mathematical terms, [CTEl ]2 ≤ CTTl CEEl ).

We will mention in the next section the possibility that a significant amount
of tensor perturbations are produced in the primordial universe. Such perturba-
tions can also generate B-type polarisation. If this is the case, all the information
is encoded in CTTl , CEEl , CTEl and CBBl . We did not include in this list the
cross-correlation spectra CTBl and CEBl , because the parity symmetry imposes
that they should vanish (at the level of primary anisotropies).

Mapping the CMB polarisation is interesting because it contains additional
information with respect to temperature anisotropies.

First, reionization has a very distinct effect on the polarisation spectrum.
The small fraction of photons rescattered around the time of reionization acquire
additional polarisation that will show up in the form of a peak in the small-
l branch of CEEl (see figure 5.12) and CTEl . We have seen in the previous
section that with temperature data only, cosmic variance limits our ability to
measure τreio, and a fortiori to constrain additional parameters describing the
reionization history. The effect of reionization in the small-l branch of CEEl and
CTEl is so big that despite of cosmic variance, τreio can be well measured using
polarisation data.

So the effect of reionization, described before as (C8), is very different for
temperature and polarisation. Instead, the other effects (C1) - (C7) have a
qualitatively similar impact on CEEl and CTEl . Still, measuring polarisation is
interesting, because temperature anisotropies feature a particular combination
of the SW, Doppler and ISW effects, while polarisation provides information on
the quadrupole Θ2 on the last scattering surface, which is correlated with the SW
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and Doppler terms, but probing a different combination of them. Hence the role
of polarisation measurements is to remove some of the parameter degeneracies
appearing in the analysis of temperature data.

Note that in the full Boltzmann equation, the equation of motion of temper-
ature and polarisation degrees of freedom are coupled. In the last sections, we
neglected such a coupling. In fact, the impact of polarisation on the evolution
of temperature anisotropies is very small. Hence our qualitative discussion of
the various effects affecting CMB temperature remains valid.

5.2.8 A quick word on tensors (not treated)

We have seen in section 5.1.1 that tensor modes are related to the traceless
divergenceless components of the metric and stress-energy tensor, obeying∑

i

δTii = 0 and ∀j,
∑
i

∂iδTij = 0 . (5.82)

Since these relations impose four constraints on the six degrees of freedom of the
3× 3 symmetric matrix δTij (or δgij), there are two tensor degrees of freedom
in gµν and Tµν .

The two degrees of freedom in δgij are the two degrees of polarisation of
gravitational waves, that can propagate even in the vacuum. In the presence of
matter with a non-diagonal stress tensor δTij , gravitational waves can be seeded
by the tensor components δTij .

If tensor perturbations are sufficiently large at recombination or later, they
can generate CMB temperature and polarisation anisotropies: one can show
that they interact with CMB photons, and produce effects similar to the SW
and ISW ones. As mentioned in the previous section, gravitational waves can
even seed B-type polarisation.

The stress-energy tensor is diagonal for perfect fluids, and negligible for pres-
sureless components like CDM. Hence, during radiation and matter domination,
tensor perturbations can only be seeded by decoupled neutrinos and/or decou-
pled photons. However, neutrino and photon tensor modes are far too small for
generating a detectable amount of CMB anisotropies. However, in the early uni-
verse, other mechanisms may produce gravitational waves on scales sufficiently
large to be observable in the CMB. The most famous one is related to inflation.
During inflation, quantum fluctuations of the metric can excite primordial ten-
sor perturbations at a level that will produce a detectable signature in CMB
maps. The amplitude of this signal is directly proportional to the energy scale
of inflation. If this scale is large enough, tensors can contribute to CTTl , but
only on small l’s, because gravitational waves decay quickly inside the Hubble
radius. Hence, one way to detect tensors would be through a small distortion
of the CTTl spectrum shape for l ≤ 100 (i.e. for scales that are equal or larger
than the Hubble radius at the time of decoupling).

However, if the tensor signal is small with respect to the error bars associated
to cosmic variance, it will remain undetectable. In that case, further sensitivity
could be obtained by measuring CBBl : in absence of tensors, CBBl would vanish,
so even if the tensor amplitude is very small it can still dominate the CBBl
signal. Unfortunately, this is true only up to some extent, because secondary
anisotropies (in particular, those generated by weak lensing) produce a non-zero
CBBl that could mask the primary tensor anisotropy spectrum.

It is very challenging for CMB experiments to reach the sensitivity level
required for detecting a CBBl signal, even for that generated by weak lensing.
Current limits on the tensor primordial spectrum (and on the energy scale of
inflation) mainly come from the observation of CTTl at small l by WMAP.
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The sensitivity of Planck to tensors will also mainly come from temperature.
Future experiments dedicated to CMB polarisation will improve the sensitivity
to B-type polarisation and obtain more precise bounds, until they reach the
theoretical limit set by the lensing contamination.

5.3 Matter power spectrum (not treated)

5.3.1 Definition

The total energy perturbation in the universe can be expanded as

δρtot = δργ + δρb + δcdm + δρν (+ δρde + ...) (5.83)

where δρde refers to possible Dark Energy (DE) perturbations, and the three
dots for extra relics. In the minimal ΛCDM model, only the first four compo-
nents are present.

Many Large-Scale Structure (LSS) observables are related to the power spec-
trum of δρtot, at different wavenumbers and redshifts. This is the case of the
galaxy and of the halo correlation function, of the cluster mass function, of CMB
lensing, of the cosmic shear spectrum, etc.

All these observations probe the power spectrum during matter or Λ/DE
domination, when photons are subdominant and δργ can be neglected. If neu-
trinos are still ultra-relativistic today, δρν can also be neglected (in this course,
we do not have time to discuss the impact of small neutrino masses). If the
acceleration of the universe is caused by a cosmological constant, there is no
term δρde. More generally, most Dark Energy models would predict a negligible
amount of DE perturbations. In summary, in a wide category of cosmological
scenarios including ΛCDM, we can use δρtot ' δm ≡ δρb + δcdm. Hence, in the
context of LSS observations, it is customary to refer to the power spectrum of
the non-relativistic matter fluctuation δm, defined as

δm =
δρm

ρ̄m
=
δρb + δρcdm

ρ̄b + ρ̄cdm
, (5.84)

which is indistinguishable from the ratio δρtot/ρ̄m. Only in models with large
dark energy perturbations or modifications of Einstein gravity, the two quanti-
ties might be different, and special care about the definition of the matter power
spectrum is needed.

The matter power spectrum P (z, k) of δm is defined like in section 5.1.5:

〈δm(z,~k)δ∗m(z,~k′)〉 = δD(~k − ~k′) P (z, k) . (5.85)

Here we used the redshift as a time variable, but we could have indifferently
used proper or conformal time. We have seen in section 5.1.5 that for Gaussian
initial conditions and as long as perturbations are linear, the power spectrum
at a given time can be written as the product of the primordial spectrum by
the square of the relevant transfer function, in our case δm(z, k). Sticking to
the same conventions as in section 5.1.5 and assuming a power-law primordial
spectrum like in section 5.2.6, this gives

P (z, k) =
2π2

k3
As

(
k

k∗

)ns−1

δ2
m(z, k) . (5.86)

Hence, by studying qualitatively the evolution of the transfer function δm(z, k),
we will get some insight on the cosmological information encoded in the matter
power spectrum.
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5.3.2 Transfer function evolution

CDM dominated universe. In order to simplify the presentation, let us first
assume that we live in a ΛCDM universe with a negligible amount of baryons:
Ωb � Ωcdm and δm ' δcdm. In section 5.2.5, we wrote the master equation gov-
erning the evolution of photon perturbations during the tightly-coupled regime.
Similarly, by combining the continuity and Euler equation of CDM perturba-
tions, we can write here a master equation for δcdm, actually valid in all regimes:

δ′′cdm +
a′

a
δ′cdm = −k2ψ + 3φ′′ + 3

a′

a
φ′ . (5.87)

In an expanding universe, the clustering rate depends on the expansion rate:
expansion increases distances, weakens gravitational forces, and slows down
clustering processes. In the above equation, this is accounted by the second
term, often called the Hubble friction term. On the right-hand side, the first
term represents gravitational forces, and the last two terms account for dilation
effects.

On super-Hubble scales, we have seen that in the Newtonian gauge, adiabatic
ICs predict constant density fluctuations δcdm. To be precise, φ and δcdm vary on
super-Hubble scales only when the total equation of state of the universe changes
(i.e. around the time of radiation/matter equality, and during Λ domination).
Instead, they remain constant on those scale during the radiation and matter
dominated regime.

Inside the Hubble radius, we can neglect dilation terms, and replace the
gravitational potential term:

δ′′cdm +
a′

a
δ′cdm −

3

2

(
a′

a

)2

Ωcdm(a) δcdm = 0 , (5.88)

where Ωcdm(a) is the fraction of the critical density coming from CDM at a
given value of time (or of the scale factor). This equation is often called the
Mészáros equation. It can be obtained by combining eq. (5.87) with the (00)
component of the Einstein equation (or its Poisson limit) and the Friedmann
equation. The careful reader might have noticed something suspicious: the
gravitational force term k2ψ has been eliminated in favor of δcdm, while the first
Einstein equation (or its Poisson limit) involves the total density fluctuation.
Hence, shouldn’t eq. (5.88) feature also δγ , δb and δν? Actually, it turns out
that the above equation is a really good approximation for the CDM equation
of evolution in all regimes, under our assumption Ωb � Ωcdm. It applies even
during radiation domination, when photon fluctuations are potentially large.
The reason is subtle and we don’t have time to study it in this course. In few
words, it has to do with the fact that the photons feel mainly pressure forces
and CDM gravitational forces; these interactions have very different time scales,
and it is possible to show mathematically that they almost decouple; for details,
see Weinberg’s cosmology textbook, or Lesgourgues, Tram and Voruz 2013.

During radiation domination, the Friedmann equation gives a ∝ η, and
Ωcdm is much smaller than one. Hence we can neglect the last term in the
Mészáros equation, and find that the two solutions are δcdm = constant and
δcdm ∝ log η. Hence CDM fluctuations grow logarithmically. During mat-
ter domination, a ∝ η2 and Ωcdm ' 1, so the solutions are δcdm ∝ η2 and
δcdm ∝ η−3. Then, CDM fluctuations grow quadratically with η. (These are
only asymptotic solutions, but the Mészáros equation can actually be solved
analytically at all times). During Λ domination, the function a(η) is more com-
plicated, and Ωcdm decreases. With a bit of work, one can show that δcdm grows
at a smaller rate than during matter domination (i.e. slower than η2), and that
the reduction of the growth rate does not depend on k.
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Figure 5.13: Qualitative evolution of the transfer function δcdm(η, k) (normal-
ized as usual to R(k) = 1 at initial time) in different regimes: during radiation
domination, matter domination, Λ domination, and on super/sub-Hubble scales.

In summary, during radiation domination, δcdm(η, k) is constant on super-
Hubble scales and grows logarithmically on sub-Hubble scales. A more precise
calculation would show that up to a numerical factor of order one, δcdm is
given on sub-Hubble scales by δcdm(η, k) = log(kη). During matter domination,
δcdm(η, k) is still constant on super-Hubble scales, and grows like η2 on sub-
Hubble scales. Finally, during Λ domination, it grows more slowly. These
different behaviors are reported in Fig. 5.13.

This simple discussion is sufficient for understanding the shape of the mat-
ter power spectrum at different time. Like in a cartoon, Fig. 5.14 shows this
shape at four different times: at some initial time when all relevant modes are
super-Hubble; at radiation/matter equality; at matter/Λ equality; and today.
Let us comment these plots. We first need to define the comoving wavenum-
bers corresponding to wavelengths crossing the Hubble radius at the time of
radiation/matter equality, of matter/Λ equality, and today:

keq = aeqHeq , kΛ = aΛHΛ , k0 = a0H0 . (5.89)

We can now review the evolution of P (k) with respect to time, following the
same steps as in Fig. 5.14.

1. At initial time, if we assume a scale-invariant spectrum with ns = 1, we
see from eq. (5.86) that P (k) ∝ k−3, with an amplitude given by As.

2. During radiation domination, modes grow logarithmically inside the Hub-
ble radius, like log(kη). At equality, super-Hubble modes (keqη � 1) are
still shaped like at initial time, while sub-Hubble modes (keqη � 1) have
been enhanced by a factor [δcdm(ηeq, k)/δcdm(ηini, k)]2 ' [log(kηeq)]2. The
two asymptots of P (k) are then given by k−3 for k � keq and k−3[log(k)]2

for k � keq.

3. At the end of matter domination, when a = aΛ, modes still outside the
Hubble radius keep being shaped like at initial time. This concerns all
modes with k � kΛ. Modes k � keq have been amplified during matter
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Figure 5.14: Shape of the matter power spectrum P (k) (log-log scale) at four dif-
ferent times: (upper left) when initial conditions are imposed (and all wavenum-
bers are super-Hubble); (upper right) at radiation/matter equality (arrows show
the logarithmic growth during radiation domination); (lower left) at matter/Λ
equality (lower set of arrows show the growth during matter domination); (lower
right) today (lower set of arrows show the growth during Λ domination).

domination by a factor [δcdm(ηΛ, k)/δcdm(ηeq, k)]2 ' (ηΛ/ηeq)4. This fac-
tor does not depend on k and preserves the shape of the power spectrum
on those scales. Finally, intermediate modes entering the Hubble scale
during matter domination have been amplified by (ηΛ/η∗)

4, where η∗ is
their time of Hubble crossing, given approximately by η∗ = 1/k. Hence
they have been amplified by (kηΛ)4. Putting all these informations to-
gether, we see that the spectrum has three branches, scaling respectively
like:

• P (k) ∝ k−3 for k < kΛ,
• P (k) ∝ k−3k4 = k for kΛ < k < keq,
• P (k) ∝ k−3(log k)2 for k > keq.

4. During Λ domination, δcdm(k, η) grows more slowly than η2, but it still
grows at the same rate for all sub-Hubble modes. So the shape of the
power spectrum today is unaltered by this stage, and given by:

• P (k) ∝ k−3 for k < k0,
• P (k) ∝ k−3k4 = k for kΛ < k < keq,
• P (k) ∝ k−3(log k)2 for k > keq.

We do not enter into details for the small range of modes obeying k0 <
k < kΛ.

All this discussion was carried under the assumption of a scale-invariant
primordial spectrum. If ns 6= 1, the above shape should simply be rescaled by
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Figure 5.15: (Left) Shape of the baryon and CDM power spectra just before the
baryon drag time, compared to the shape of the primordial spectrum (dashed
line). (Right) Shape of the matter power spectrum well after the baryon drag
time, when baryons and CDM perturbations have reached gravitational equilib-
rium, compared to the shape of the primordial spectrum (dashed lines) and to
the spectrum of a CDM-dominated universe (dotted line).

kns−1, and the three branches of the power spectrum are given by:
• P (k) ∝ kns−4 for k < k0,
• P (k) ∝ kns for kΛ < k < keq,
• P (k) ∝ kns−4(log k)2 for k > keq.

This closes the presentation of the shape of P (z, k) in the limit Ωb � Ωcdm.
What remains to be seen is the impact of a non-negligible baryon fraction on
the power spectrum.

Baryon corrections. We must define a new important time in the evo-
lution of the universe: the baryon drag time. The photon decoupling time was
defined through the maximum of the photon visibility function g(η). But there
are many more photons than baryons in the universe. Hence, for some amount
of time after photon decoupling, baryons keep tracking photon perturbations: in
other words, the baryon population decouples later than the photon population
(seen as a whole).

Until the baryon drag time, we know that δb = 3
4δγ . After that time,

baryons do not experience significant Thomson scattering anymore. They only
feel gravity, and collapse in gravitational potential wells.

We know qualitatively the behavior of the baryon transfer function δb(η, k)
just before baryon drag, since in the CMB section we have studied the behav-
ior of the photon transfer function. We know that δb = 3

4δγ is constant on
super-sound-horizon scales, experiences stationary oscillations on sub-sound-
horizon scales during radiation domination, and finally damped oscillations on
sub-sound-horizon scales during matter domination. Moreover, we expect that
at any time — and particularly at the approach of decoupling — the relation
δb = 3

4δγ breaks on very small wavelengths comparable to the mean free path
of baryons in the imperfect baryon-photon fluid, but here we will not discuss
such small scales.

The behavior of the CDM transfer function δcdm(η, k) before baryon drag
is still given by the Mészáros equation: deep inside the sound horizon, baryons
are much less clustered than CDM, so that CDM is almost self-gravitating.

In the left plot of Fig. 5.15, we sketch the qualitative behavior of the individ-
ual power spectrum of baryons and CDM just before baryon drag (Pb(k) and
Pcdm(k) are defined as in eq. (5.86), with δm replaced either by δb or δcdm).

After baryon drag, baryons collapse in potential gravitational wells. Since
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δb grows, CDM will start to feel the gravity of baryons. Finally, because CDM
and baryons are two collisionless species feeling the same gravitational forces,
they will equilibrate with δb = δcdm. The gravitational potential is then related
to this common value by the (00) Einstein equation (or its Poisson sub-Hubble
limit). This is not true however on very small scales, for which the baryon
pressure cannot be neglected, but here we do not discuss such small scales.

Hence, after a quick relaxation period, the two power spectra of baryons
and CDM are equal to each other, Pb(k) = Pcdm(k) = P (k). In order to relate
this common power spectrum to the individual power spectrum of baryons and
CDM before baryon drag, one must follow a matching process described in
details in Eisenstein and Hu 1997. Intuitively, the matching depends on the
relative weight of baryons and CDM, i.e. on the ratio Ωb/Ωcdm. In the limit
Ωb � Ωcdm, what we wrote at the beginning of this section applies. In the limit
Ωb � Ωcdm, the power spectrum is very suppressed with respect to the CDM-
dominated case, with a much more negative slope on average, and some large
oscillations corresponding to photon-baryon acoustic waves before decoupling.
Finally, if Ωb is a bit smaller than Ωcdm but not negligible (as it is the case
in our universe), the power spectrum departs slightly from a pure CDM one,
with a smooth step-like suppression plus small oscillatory patterns, which are
the smoking gun in the recent universe of baryon-photon acoustic oscillations
happening before photon decoupling. This is illustrated on the right plot of
Fig. 5.15. These oscillations are called Baryon Acoustic Oscillations (BAO).

LSS observations can only probe the power spectrum on scales much smaller
than the radius of the observable universe, i.e. than the current Hubble radius.
For this reason, the first of the three branches described above is unobservable5.
We can only measure the second and third branches, behaving respectively like
P (k � keq) ∝ kns and, in first approximation, P (k � keq) ∝ [kns−4(log k)2],
plus the titling and superimposed oscillations coming from baryons.

5.3.3 Parameter dependence

The discussion presented in the previous section allows us to understand which
effects and which parameters impact the shape of the matter power spectrum
in the minimal (flat) ΛCDM model, parametrized by

{As, ns, ωb, ωm,ΩΛ, τreio} (5.90)

(see Sec. 5.2.6 for details on this parametrization). We can already notice that
the reionization optical depth is relevant for the CMB spectrum but not for
P (k), since it only impacts the scattering rate of photons in the recent universe.
Other effects are described in Table 5.2. Below, we give more details on these
effects.

(P1) The time of equality determines the scale keq of the power spectrum peak.
More precisely, if this scale is expressed in units of hMpc−1, which is
the usual convention, then one can show that the scale of the maximum
depends on both zeq and Ωm (i.e. on our parameter basis on ωm and
ΩΛ = 1− Ωm).

5The first unobservable branch is actually gauge-dependent: it behaves like kns−4 in the
Newtonian gauge, but not in other gauges. Note that truly observable quantities are always
gauge-invariant. We have been a bit uncareful when saying that LSS data probes the power
spectrum of δm. In fact, different LSS observations probe different quantities, each of them
being gauge-invariant. However, well inside the Hubble region, all these quantities coincide
with each other and with the spectrum of δm computed in an arbitrary gauge (up to small
corrections that may become important in the future, but not with current experimental
sensitivities).
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Table 5.2: Independent leading effects controlling the shape of the matter power
spectrum P (k) in the minimal ΛCDM model.

Effect Relevant quantity Parameter

(P1) scale of the maximum keq ωm,ΩΛ

(P2)
slope for k � keq

and BAO amplitude
Ωb/Ωcdm ωb, ωm

(P3) BAO scale rs(ηdrag) ωb, ωm

(P4) Global amplitude
amplitude of primordial spectrum
and duration of ΛD

As,ΩΛ

(P5) Global tilt tilt of primordial spectrum ns

(P2) The baryon abundance (relative to CDM) is crucial at the matching time:
a high baryon abundance leads to more suppression of the power spectrum
for k ≥ keq, and to more pronounced BAOs.

(P3) We have seen that the scale of acoustic oscillations is set by the sound
horizon at a given time. Since photons decouple at ηdec, the scale of
oscillations on the last scattering surface is set by ds(ηdec), corresponding
to the comoving scale rs(ηdec) = ds(ηdec)/a(ηdec). Similarly, since baryons
decoupled at ηdrag, the scale of BAOs depends on ds(ηdrag) at baryon drag,
corresponding to the comoving scale rs(ηdrag) = ds(ηdrag)/a(ηdrag). As
explained in Sec. 5.2.6, the sound horizon at a given time depends on ωb

and ωm. In the case of ds(ηdrag) the dependence on ωb is even stronger
because the time of baryon drag itself depends strongly on the baryon
abundance.

(P4) The global amplitude depends of course on the primordial spectrum am-
plitude, i.e. on As. Also, we have seen that during Λ domination, the
growth rate of fluctuations is reduced with respect to matter domination,
but is independent of k for all sub-Hubble scales. Hence, ΩΛ also affects
the global amplitude of the power spectrum.

(P5) The global tilt depends of course on the primordial spectrum tilt, i.e. on
ns.

This discussion shows that in principle, a precise measurement of the matter
power spectrum today (or at a given redhsift) would allow to measure indepen-
dently ωb, ωm, ns, As and ΩΛ (assuming a flat ΛCDM universe). In practice,
given the limited precision of current data sets, some of the effects described
above are degenerate with each other, and matter power spectrum observations
are mainly useful in combination with CMB observations, since they bring in-
dependent and complementary information.

Future experiments will use all the discriminating power of the matter power
spectrum. They will perform accurate measurements of P (k, z) at different
redshifts. This is crucial for at least two reasons:

• First, the effect of ΩΛ in (P5) is redshift dependent: at different redshifts,
fluctuations have spent more or less time during the Λ dominated regime,
and the power spectrum amplitude has been more or less affected. Hence,
the comparison of the amplitude at different redshifts allows to measure
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ΩΛ, or more generally to test the compatibility of the data with a cosmo-
logical constant (rather than some dynamical Dark Energy model).

• Second, BAOs appear at a fixed comoving wavenumber kBAO in Fourier
space (related to rs(ηdrag)), but if we measure it in different LSS datasets
at different redshifts (corresponding to different shells in real space), this
scale will be seen under different angles6. By comparing the BAO angle
at different redshifts, one can reconstruct the angular diameter distance,
and therefore the expansion history at different redshifts. This is another
way of measuring ΩΛ or testing the Λ model versus DE models.

6Here we are assuming that the BAO scale is measured in each redshift shell transversally,
i.e. in the direction orthogonal to the line of sight. Real experiments probe the BAO scale both
transversally and longitudinally, so the situation is a bit more subtle than in this simplified
discussion.



Chapter 6

Cosmological observations

6.1 Minimal set of parameters

One can build arbitrarily complicated cosmological models with an arbitrary
number of physical ingredients and free parameters. But given what we have
seen in the course, a number of parameters are unavoidable:

• by postulating that the Universe is described by the Friedmann-Lemâıtre-
Robertson-Walker metric, we are forced to introduce one parameter: the
Hubble rate today H0 (or the reduced Hubble rate h), and to wonder about
the value of two more parameters: the fractional density of cosmological
constant ΩΛ and the effective fractional density of curvature Ωk.

• the presence of a photon background is confirmed by the observation of
Penzias & Wilson (and their successors), and the presence of a neutrino
background is strongly suggested by the assumption of thermal equilib-
rium in the early universe. In principle this should lead to two new param-
eters: the physical density parameters ωγ and ων . However we have seen
in the course that given the precise measurement of the CMB temperature
since many decades, ωγ can be considered as a fixed parameter:

ωγ ≡ Ωγh
2

=
ρ̄0
γ

ρ̄0
c

h2

=

(
π2

15
T 4

0

)(
8πG

3H2
0

)
h2

=
8π3T 4

0

45(H0/h)2M2
P

. (6.1)

Today we know that T0 = 2.7255±0.0006 K (68% CL, Fixsen et al. 2009,
ApJ, 707, 916), leading to ωr = (2.472±0.002)×10−5. Moreover, if nothing
strange occurs in the universe near the time of neutrino decoupling and
if the sequence of events after neutrino decoupling is similar to what we
described in Chapter 3, the neutrino abundance is fixed relative to that
of photons, and the total radiation density reads:

ωr ≡ ωγ + ων

=

[
π2

15
T 4

0 +Neff ×
7

8
× π2

15
T 4
ν0

](
8πG

3H2
0

)
h2

=

[
1 +Neff ×

7

8
×
(

4

11

)4/3
]
ωγ (6.2)
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Here, according to the simple calculations of Chapter 3, Neff should be
equal to the number of neutrino species, Neff = 3 (and not 6: the abun-
dance of neutrinos plus anti-neutrinos is already counted in the previous
formula). However, refined numerical calculations taking into account
various effects (non-instantaneous decoupling near positron annihilation,
neutrino oscillations, ...) gives a small correction to this result, usually
absorbed in a redefinition of the parameter Neff , such that Neff = 3.046
(Mangano et al., Nucl.Phys. B729 (2005) 221-234). With Neff = 3.046
and T0 = 2.7255 K one gets ωr = 4.183× 10−5.

• we know that there must be baryons around because we see them, and
also because they are crucial for Nucleosynthesis and CMB physics. We
know as well that there must be cold dark matter, given the observations
mentioned in Chapter 6. This leads to two new parameters ωb and ωcdm

summing up to the total matter density ωm.

• to describe the primordial spectrum of scalar perturbations, and more
precisely of curvature fluctuations, we need at least an amplitude As and
a tilt ns, where s refers to “scalar” (the tilt will be better motivated in
Chapter 7).

• we briefly mentioned reionisation. It should be described by at least one
parameters, the optical depth to reionisation τreio, giving the amplitude of
the plateau in the optical depth evolution curve, stretching from the end
of recombination to the beginning of reionisation.

At this point we are left with a set of 8 parameters:

{h,ΩΛ,Ωk, ωb, ωm, As, ns, τreio} . (6.3)

However they are not all independent because the relation
∑

Ωi = 1 gives

ωm
h2

+ ΩΛ + Ωk = 1 . (6.4)

So we need to drop one parameter in the basis. Usually one drops either h or
ΩΛ. Here we will usually drop h.

6.2 Brief history of the minimal cosmological
model(s)

We gave strong motivations for the presence of photons, neutrinos, baryons
and CDM, but not for Λ and curvature. For the latter parameters, we don’t
understand well enough the fundamental theory describing the universe at early
times and high energies for being able to make a neat prediction, like we do,
e.g., for neutrinos. So the answer can only come from observations.

Several decades ago, when observations were not very accurate, people tried
to stick to the simplest possible model in terms of number parameters, assuming
ΩΛ = Ωk = 0. The minimal model was then called “standard Cold Dark Matter”
(sCDM), with 5 free independent parameters {ωb, ωm, As, ns, τreio}. In the 70’s-
80’s, this model became better and better established, thanks to observations of
the CMB background, on the theory of Nucleosynthesis combined with the first
good observations of primordial element abundances, and on observations of the
distribution and of the dynamics of clusters and galaxies proving the existence of
dark matter. There were still some doubts concerning the fact that dark matter
is cold (heavy particles with small velocities) or hot (light neutrinos). So sCDM
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had a competitor, called sHDM. In the early nineties it became clear that Hot
Dark Matter cannot cluster enough to explain the abundance of clusters today,
and sHDM was disqualified in favour of sCDM.

In the early and mid-nineties, several observations started to be in tension
with sCDM, and in particular, those of the age of the most distant quasars.
Given observational bounds on h, the sCDM model predicted a universe too
young to accommodate such objects. There were two obvious solutions: as-
suming a cosmological constant (ΩΛ > 0), or a negatively curved/open universe
(k < 0, Ωk > 0).

The question was settled with the first accurate measurements of the su-
pernovae luminosity–redshift relation in 1998: fitting the data required at least
ΩΛ > 0. The data could be fitted with ΩΛ > 0 and Ωk = 0, so the mini-
mal cosmological model became ΛCDM with 6 free independent parameters:
{ωb, ωm,ΩΛ, As, ns, τreio}.

Since 1998 observations have done amazing progress, in particular, as far as
CMB anisotropies are concerned. Many cosmologists thought that with such
progress we would detect some new effects, and switch to a minimal model with
more ingredients and more parameters. In fact this was not the case. The new
data has confirmed ΛCDM with incredible precision, and not detected any effect
requiring more ingredients.

The next sections will review the main categories of observations described
in this short summary, following the same order (referring to their chronological
importance): abundance of primordial elements, age of the universe, supernovae,
CMB anisotropies and galaxy correlation function.

6.3 Abundance of primordial elements

In sections 3.3.5, we have seen that the theory of Nucleosynthesis can predict
the abundance of light elements formed in the early universe, when the energy
density was of order ρ ∼ (0.07 MeV)4. After Nucleosynthesis, there are no more
nuclear reactions in the universe, excepted in the core of stars. So, today, in
regions of the universe which were never filled by matter ejected from stars,
the proportion of light elements is still the same as it was just after Nucleosyn-
thesis. Fortunately, the universe contains clouds of gas fullfilling this criteria,
and the abundance of deuterium, helium, etc. can be measured in such regions
(e.g. by spectroscopy). The results can be directly compared with theoretical
predictions.

The predictions presented in this course were based on a very simplistic de-
scription of Nucleosynthesis. Precise predictions arise from codes simulating the
evolution of a system of many different reactions. Table 6.1 shows, for instance,
the first 40 reactions used in the public code parthenope1. In section 3.3.5,
we only studied the reactions called 1 and 12 in this table.

Numerical simulation of Nucleosynthesis accurately predict all relative abun-
dances as a function of the only free parameter in the theory, the baryon density.
We remember that the temperature at which light elements start forming is fixed
by equation (3.67) and depends on ηb ≡ nb/nγ ∼ 10−10, which precise value
is given by ηb = 5.5 × 10−10(ωb/0.020) (note that ηb is defined at any time
between positron annihilation and today: it is constant in this range). Hence,
relative abundances depend on ωb. Figure 6.1 shows the dependence of the
abundance of 4He, D, 3He and 7Li on ηb. Using this dependence, Nucleosyn-
thesis experts are able to convert measurements of the primordial Helium and
Deuterium abundance into a prediction for the baryon density.

1http://parthenope.na.infn.it/
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No. Reaction Type No. Reaction Type

1 n −→ p weak 22 6Li + p −→ γ + 7Be (p,γ)

2 3H → ν̄e + e− + 3He weak 23 6Li + p −→ 3He + 4He 3He Pickup

3 8Li → ν̄e + e− + 2 4He weak 24 7Li + p −→ 4He + 4He 4He Pickup

4 12B → ν̄e + e− + 12C weak 24 bis 7Li + p −→ γ + 4He + 4He (p,γ)

5 14C → ν̄e + e− + 14N weak 25 4He + 2H −→ γ + 6Li (d,γ)

6 8B → νe + e+ + 2 4He weak 26 4He + 3H −→ γ + 7Li (t,γ)

7 11C → νe + e+ + 11B weak 27 4He + 3He −→ γ + 7Be (3He,γ)

8 12N → νe + e+ + 12C weak 28 2H + 2H −→ n + 3He 2H Strip.

9 13N → νe + e+ + 13C weak 29 2H + 2H −→ p + 3H 2H Strip.

10 14O → νe + e+ + 14N weak 30 3H + 2H −→ n + 4He 2H Strip.

11 15O → νe + e+ + 15N weak 31 3He + 2H −→ p + 4He 2H Strip.

12 p + n −→ γ + 2H (n,γ) 32 3He + 3He −→ p + p + 4He (3He,2p)

13 2H + n −→ γ +3H (n,γ) 33 7Li + 2H −→ n + 4He + 4He (d,n α)

14 3He + n −→ γ + 4He (n,γ) 34 7Be + 2H −→ p + 4He + 4He (d,p α)

15 6Li + n −→ γ + 7Li (n,γ) 35 3He + 3H −→ γ + 6Li (t,γ)

16 3He + n −→ p + 3H charge ex. 36 6Li + 2H −→ n + 7Be 2H Strip.

17 7Be + n −→ p + 7Li charge ex. 37 6Li + 2H −→ p + 7Li 2H Strip.

18 6Li + n −→ 3H + 4He 3H Pickup 38 3He + 3H −→ 2H + 4He (3H,d)

19 7Be + n −→ 4He + 4He 4He Pickup 39 3H + 3H −→ n + n + 4He (t,n n)

20 2H + p −→ γ + 3He (p,γ) 40 3He + 3H −→ p + n + 4He (t,n p)

21 3H + p −→ γ + 4He (p,γ)

Table 6.1: The first forty reactions used in the Nucleosynthesis code partenope.
Table taken from [arXiv:0705.0290] by Ofelia Pisanti et al.

Figure 6.1: The Nucleosynthesis-predicted primordial abundances of D, 3He, 7Li
(relative to hydrogen by number), and the 4He mass fraction (YP ), as functions
of the baryon abundance parameter η10 ≡ 1010ηb. The widths of the bands
reflect the uncertainties in the nuclear and weak interaction rates. Plot taken
from Int.J.Mod.Phys. E15 (2006) 1-36 [arXiv:astro-ph/0511534v1] by Gary
Steigman.
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Currently, the agreement between Nucleosynthesis and other types of cos-
mological observations is impressive. The latest CMB observations from the
planck satellite indicate a baryon density

ωb ≡ Ωbh
2 = 0.0223± 0.0002 (68%CL). (6.5)

When reported in Nucleosynthesis calculations, this number leads to predictions
for the 4He and D abundance that are in very good agreement with observations.
It is considered as a huge success for cosmology that two very different techniques
(Nucleosynthesis, which relies on nuclear physics when T ∼ (0.01−1) MeV, and
CMB, relaying on relativistic hydrodynamics and QED when T ∼ (0.1−100) eV)
give compatible results for ωb.

Hence, for h = 0.67 (the current best-fit value), the baryon fraction is of
the order of Ωb ∼ 0.05: approximately five percent of the universe density
comes from ordinary matter. This is already more than the sum of all luminous
matter, which represents only one per cent: so, 80% of ordinary matter is not
even visible.

Note that if ωr was a free parameter, the outcome of Nucleosynthesis would
also depend crucially on ωr. So, Nucleosynthesis can also be used as a tool for
testing the fact that eq. (6.2) with Neff ' 3 is correct. It turns out to be the
case: primordial element abundances provide a measurement of ωr precise at
the 10% level, and perfectly compatible with eq. (6.2).

6.4 Age of the universe

The age of the universe can be conveniently computed once the functionH(a)/H0

or H(z)/H0 is known. This function follows from the Friedmann equation di-
vided by H2

0 :

H2

H2
0

=
ρ̄tot
ρ̄c
− k

a2H2
0

= Ωr

(a0

a

)4

+ Ωm

(a0

a

)3

+ Ωk

(a0

a

)2

+ ΩΛ (6.6)

= Ωr (1 + z)
4

+ Ωm (1 + z)
3

+ Ωk (1 + z)
2

+ ΩΛ , (6.7)

with the constraint that Ωr + Ωm + Ωk + ΩΛ = 1 by construction. Since H =
da/(adt), we can write:

dt =
da

aH
= − dz

(1 + z)H
. (6.8)

Hence, the age of the universe can be computed from the integral

t =

∫ a0

0

da

aH
= H−1

0

∫ a0

0

da

a

(
H0

H(a)

)
, (6.9)

or equivalently from

t =

∫ ∞
0

dz

(1 + z)H
= H−1

0

∫ ∞
0

dz

1 + z

(
H0

H(z)

)
. (6.10)

This integral converges with respect to the boundary corresponding to the initial
singularity, a −→ 0 or z −→ ∞. Actually, it is easy to show that the radiation
dominated period gives a negligible contribution to the age of the universe, hence
the term proportional to Ωr can be omitted in the integral. If the universe is
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matter-dominated today (ΩΛ = Ωk = 0), then Ωm = 1 and the age of the
universe is simply given by:

t = H−1
0

∫ ∞
0

dz (1 + z)
−5/2

=
2

3H0
= 6.52h−1Gyr , (6.11)

where 1 Gyr ≡ 1 billion years. If ΩΛ > 0 and/or Ωk < 0 (negatively curved
universe), the ratio H(z)/H0 decreases with respect to the ΩΛ = Ωk = 0 case for
all values of z corresponding to Λ or curvature domination. For Ωk > 0 (closed
universe), it increases. Hence, the age of the universe increases with respect to
6.52h−1Gyr if ΩΛ > 0 and/or Ωk < 0, and decreases if Ωk > 0.

The age of of a few specific object in the universe can be evaluated with a
number of techniques, e.g. by nucleochronology (studying the radioactive decay
of isotopes inside an object, exactly like in the 14C method used in archeology);
or by measuring the cooling of stars in their final state, called “white dwarfs”,
and comparing with the mean evolution curve of white dwarfs; etc. If the age of
an object is found to be extremely large, it provides a lower bound on the age
of the universe itself. This set of observations sets a reliable lower bound on the
age of the universe: t > 11Gyr. This is incompatible with the matter-dominated
universe of eq. (6.11) unless h < 0.59. But different ways to measure the Hubble
parameter point at h ∼ 0.67. Hence, these observations provide a strong hint
that that the universe is either negatively curved or Λ–dominated today. This
“age problem” was already known in the 90’s.

6.5 Luminosity of Type Ia supernovae

The evidence for a non–zero cosmological constant has increased considerably in
1998, when two independent groups studied the apparent luminosity of distant
type Ia supernovae (SNIa). For this type of supernovae, astronomers believe
that there is a simple relation between the absolute magnitude and the lumi-
nosity decay rate. In other words, by studying the rise and fall of the luminosity
curve during a few weeks, one can deduce the absolute magnitude of a given
SNIa. Therefore, it can be used in the same way as cepheids, as a probe of the lu-
minosity distance – redshift relation. In addition, supernovae are much brighter
than cepheids, and can be observed at much larger distances (until redshifts of
order one or two). While observable cepheids only probe short distances, where
the luminosity distance – redshift relation only gives the Hubble law (the pro-
portionality between distance and redshift), the most distant observable SNIa’s
are in the region where general relativity corrections are important: so, they
can provide a measurement of the scale factor evolution (see section 2.2.2).

On figure 6.2, the various curves represent the effective magnitude–redshift
relation, computed for various choices of ΩM and ΩΛ. The effective magnitude
mB plotted here is essentially equivalent to the luminosity distance dL, since it
is proportional to log[dL] plus a constant. For a given value of H0, all the curves
are asymptotically equal at short distance. Significant differences show up only
at redshifts z > 0.2. Each red data point corresponds to a single supernovae in
the first precise data set: that of the “Supernovae Cosmology Project”, released
in 1998. Even if it is not very clear visually from the figure, a detailed statistical
analysis of this data revealed that a flat matter–dominated universe (with Ωm =
1, ΩΛ = 0) was excluded. This result has been confirmed by various more recent
data sets. The top panel of figure 6.3 shows the luminosity distance – redshift
diagram for the SNLS data set, released in 2005 (this is not the recent one).
The corresponding constraints on Ωm and ΩΛ are displayed in Figure 6.4, and
summarized by:

(Ωm − ΩΛ,Ωm + ΩΛ) = (−0.49± 0.12, 1.11± 0.52) . (6.12)
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Figure 6.2: The results published by the “Supernovae Cosmology Project” in
1998 (see Perlmutter et al., Astrophys.J. 517 (1999) 565-586). The various
curves represent the effective magnitude–redshift relation, computed for vari-
ous choices of Ωm and ΩΛ. This plot is equivalent to a luminosity distance –
redshift relation (effective magnitude and luminosity distance can be related in
a straightforward way: mB ∝ (log[dL] + cst)). The solid black curves account
for three examples of a universe with positive/null/negative curvature and no
cosmological constant. The dashed blue curves correspond to three spatially
flat universes with different values of ΩΛ. For a given value of H0, all the curves
are asymptotically equal at short distance, probing only the Hubble law. The
yellow points are short–distance SNIa’s: we can check that they are approxi-
mately aligned. The red points, at redshifts between 0.2 and 0.9, show that
distant supernovae are too faint to be compatible with a flat matter–dominated
universe (Ωm,ΩΛ) =(1,0).
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Figure 6.3: (Top panel) Same kind of luminosity distance – redshift diagram
as in the previous figure, but for more recent data published by the SNLS
collaboration in 2005. (Lower panel) Same data points and errors, divided
by the theoretical prediction for the best fit ΛCDM model. Plot taken from
Astronomy and Astrophysics 447: 31-48, 2006 [e-Print: astro-ph/0510447] by
Pierre Astier et al.
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Figure 6.4: Contours at 68.3%, 95.5% and 99.7% confidence levels in the (Ωm,
ΩΛ) plane from the SNLS supernovae data (solid contours), the SDSS baryon
acoustic oscillations (see section ??, dotted lines), and the joint confidence con-
tours (dashed lines). These plots are all assuming a ΛCDM cosmology, as we
are doing in this chapter. Plot taken from Astronomy and Astrophysics 447:
31-48, 2006 [e-Print: astro-ph/0510447] by Pierre Astier et al.

Hence, supernovae data strongly suggest the existence of a cosmological con-
stant today (ΩΛ > 0). In fact, the small luminosity of high-redshift supernovae
suggests that the universe is currently in accelerated expansion. The supernovae
data does not say whether the parameter Ωk is negligible, positive or negative.
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6.6 CMB temperature anisotropies

The order of magnitude of CMB anisotropies was predicted many years before
being measured. By extrapolating from the present inhomogeneous structure
back to the time of decoupling, many cosmologists in the 80’s expected δT/T̄ to
be at least of order 10−6 – otherwise, clusters of galaxies could not have formed
today.

Many experiments were devoted to the detection of these anisotropies. The
first successful one was COBE, a NASA satellite carrying an interferometer
of exquisite sensitivity. In 1992, COBE mapped the anisotropies all over the
sky, and found an average amplitude δT/T̄ ∼ 10−5 (see figure 6.5). This was
in perfect agreement with the theoretical predictions – another big success for
cosmology. The COBE experiment had an angular resolution of a few degrees:

Figure 6.5: The first genuine “picture of the baby universe” at the time of
decoupling, 380 000 years after the initial singularity, and 13.8 billion years
before the present epoch. Each blue (resp. red) spot corresponds to apparently
colder (resp. warmer) photons, and hence, given what we have learnt about the
Sachs-Wolfe effect, to a warmer (resp. colder) region of the universe at that time.
This map, obtained by the NASA satellite COBE in 1994 (see C. L. Bennett
et al., Astrophys.J. 464 (1996) L1-L4), covers the entire sky: so, it pictures a
huge sphere centered on us (on the picture, the sphere has been projected onto
an ellipse, where the upper and lower points represent the direction of the poles
of the Milky way). Away from the central red stripe, which corresponds to
photons emitted from our own galaxy, the fluctuations are only of order 10−5

with respect to the average value T0 = 2.7255 K. They are the “seeds” for
the present structure of the universe: each blue spot corresponds to a small
over-density of photons and baryons at the time of decoupling, that has been
enhanced later, leading to galaxies and clusters of galaxies today.

so, anisotropies seen under one degree or less were smoothed by the detector. In
a Fourier decomposition, it means that COBE could only measure the spectrum
of wavelengths larger than the sound horizon at decoupling. So, it was not
probing the acoustic oscillations, but only the flat plateau. Hence, after 1992,
considerable efforts were devoted to the design of new experiments with better
angular resolution, in order to probe smaller wavelengths, check the existence
of the acoustic peaks, compare them with theoretical predictions and measure
the related cosmological parameters.

For instance, some decisive progresses were made with Boomerang, a US–
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Italian–Canadian balloon, carrying some detectors called bolometers. In 2001,
Boomerang published the map of figure 6.6. It was focused on a small patch of
the sky, but with much better resolution than COBE (a few arc–minutes).

Figure 6.6: The map of CMB anisotropies obtained by the balloon experiment
Boomerang in 2001 (see S. Masi et al., Prog.Part.Nucl.Phys. 48 (2002) 243-
261). Unlike COBE, Boomerang only analyzed a small patch of the sky, but
with a much better angular resolution of a few arc–minutes. The dark spots
correspond to colder CMB photons.

The Fourier decomposition of the Boomerang map clearly showed the first
three acoustic peaks (see figure 6.7). Let us recall that the angular size of
the first peak probes the angular diameter distance at the redshift of photon
decoupling, and depends heavily on the spatial curvature parameter Ωk. The
position of the first peak measured by Boomerang was perfectly consistent with
Ωk = 0. Boomerang brought the first convincing arguments in favor of an
exactly flat or at least nearly flat universe. The combination of Boomerang
data with supernovae observations started to show that the preferred values of
Ωm and ΩΛ were around 0.3 and 0.7 respectively.

After COBE, there have been two more CMB satellite producing full-sky
CMB maps: the NASA satellitle WMAP (results in 2003-2013), and the ESA
satellite Planck (results in 2013-2016). These satellite experiments are comple-
mentary to several ground-based and ballon-borne instruments looking at small
patches of the sky with very high resolution.

The beautiful CMB anisotropy map of Planck and the inferred power spec-
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Figure 6.7: The temperature spectrum Cl measured by the Boomerang map
revealed the structure of the first three acoustic oscillations (see C. B. Netterfield
et al., Astrophys.J. 571 (2002) 604-614).

trum are shown in Figures 6.8 and 6.9. Amazingly, the temperature spectrum
is still very well fitted by the ΛCDM model. The error bars of Planck data are
very small, so even a tiny deviation from ΛCDM could in principle be observed,
if it existed. Hence, the Planck data provides very strong constraints on all the
parameters that may account for additional physical ingredients in the Universe.
Planck alone measures the following values of ΛCDM parameters:

ωb = 0.02226± 0.00023 (6.13)

ωcdm = 0.1186± 0.0020 or ωm = 0.1415± 0.0019 (6.14)

ΩΛ = 0.692± 0.012 or h = 0.678± 0.009 (6.15)

ln(1010As) = 3.062± 0.029 (6.16)

ns = 0.9677± 0.0060 (6.17)

τreio = 0.066± 0.016 (6.18)

implying an age of t0 = 13.799± 0.038 Gyr. All these error bars are at the 68%
Confidence Level (CL), i.e. at“1 σ”.

We won’t review here the limits on extensions of the ΛCDM model, excepted
for the two cases that we have already discussed: is the universe really flat
(Ωk = 0)? And is the radiation density (and neutrino density) really well
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Figure 6.8: The full-sky map of CMB anisotropies obtained by the ESA satellite
Planck in 2015 (see arXiv:1502.01582).

Figure 6.9: Top. The blue dot show the temperature power spectrum measured
by Planck (the y-axis shows DTT

l ≡ l(l+ 1)Cl/[2π]× T 2
0 in units of [µK]2). For

l < 30, the data is show for each mutipole l and the l-scale is logarithmic. For
l ≥ 30, the data is presented in bins (i.e., is averaged over a group of consecutive
l values), in linear scale. The red curve is the best 6-parameter ΛCDM fit.
Bottom. Plot of the residuals, i.e., of the data points after subtraction of the
best fit. For details see arXiv:1502.01589.

accounted by eq. (6.2) with Neff = 3.046? Currently, the Planck data alone
give Ωk = −0.005± 0.017 (95%CL) and Neff = 2.99± 0.20 (68%CL), again well
compatible with the standard assumptions.
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Figure 6.10: The full-sky map of CMB polarisation obtained by the ESA satel-
lite Planck in 2015 (see arXiv:1502.01582). The colours indicate the degree of
polarisation (blue = unpolarised, read = very polarised). The patterns show in
each point the orientation of the polarisation plane. In order to get a clear plot,
the polarisation patterns have been smoothed over a scale of 5 deg. This means
that the actual data contains even more information on small scales than shown
in this figure.

Figure 6.11: Left. Same kind of plots as in figure 6.9, but for the polarisation
spectrum CEEl instead of the temperature spectrum Cl ≡ CTTl . Right. Same
for the cross-correlation spectrum between temperature and polarisation, CTEl .
In both plots, the red curves are obtained by measuring the best-fitting cosmo-
logical parameters of the ΛCDM model using the temperature spectrum only,
and then, computing theoretical predictions for CEEl and CTEl . Hence the very
good agreement between the red curves and the data points is a beautiful con-
sistency check of the ΛCDM model, and of our understanding of CMB physics.
For details see arXiv:1502.01589.

In this course we did not describe in details the physics of CMB polarisa-
tion, just briefly introduced in section 5.2.7. Let us just mention that we can
do theoretical predictions for the CMB polarisation spectrum, just like for the
temperature spectrum. The temperature spectrum, noted Cl in this course,
is often called more precisely CTTl where TT means “temperature × tempera-
ture”. One can also build a “temperature × polarisation” spectrum CTEl and
a “polarisation × polarisation” spectrum CEEl . Figures 6.10 and 6.11 show the
Planck polarisation map, and the comparison of predicted and observed polari-
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sation spectra. The fits are very good and provide another consistency check of
the ΛCDM model.

The polarisation signal mentioned here is what experts call “E-polarisation”,
i.e. the curl-free component of polarisation patterns. The other component,
called “B-polarisation”, is much smaller and more difficult to observe. It is how-
ever very interesting, because it could reveal the existence of primordial tensor
perturbations in the universe (see section 5.2.8). Future CMB experiments are
designed primarily for measuring these B modes.

6.7 Other observations not discussed here

Due to time limits, we do not address in this course other techniques which
might become particularly important in the future: the study of the galaxy and
cluster correlation function, allowing to measure the matter power spectrum
P (k, z) reviewed in section 5.3; the study of galaxy cluster abundances as a
function of redshift; surveys of peculiar velocities; analyses of Lyman-α forests
in the spectrum of quasars; galaxy weak lensing and cosmic shear; CMB weak
lensing; the study of the 21cm absorption line in gas clouds; etc. The future of
observational and theoretical cosmology is mainly related to these observables,
but in order to discuss them, we would need another semester...
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Chapter 7

Inflation

7.1 Motivations for inflation

7.1.1 Flatness problem

Today, Ωk is measured to be at most of order 10−2, possibly much smaller, while
Ωr ≡ ρr/ρcrit ' ρr/(ρΛ + ρm) is of order 10−4. Since ρeff

k scales like a−2, while

radiation scales like a−4, the hierarchy between ρr and ρeff
k increases as we go

back in time. If ti is some initial time, t0 is the time today, and we assume for
simplicity that the ratio ρeff

k /ρr is at most equal to one today, we obtain

ρeff
k (ti)

ρr(ti)
≤
(
a(ti)

a(t0)

)2

=

(
ρr(t0)

ρr(ti)

)1/2

. (7.1)

Today, the radiation energy density ρr(t0) is of the order of (10−4eV )4. If the
early universe reached the order of the Planck density (1018GeV )4 at the Planck
time tP , then at that time the ratio was

ρeff
k (tP )

ρr(tP )
=

(10−4eV )2

(1018GeV )2
∼ 10−62 . (7.2)

Even if the universe never reached such an energy, the hierarchy was already
huge when ρr was of order, for instance, of (1 TeV )4.

If we try to build a mechanism for the birth of the classical universe (when
it emerges from a quantum gravity phase), we will be confronted to the problem
of predicting an initial order of magnitude for the various terms in the Fried-
mann equation: matter, spatial curvature and expansion rate. The Friedmann
equation gives a relation between the three, but the question of the relative am-
plitude of the spatial curvature with respect to the total matter energy density,
i.e. of the hierarchy between ρeff

k and ρr, is an open question. We could argue
that the most natural assumption is to start from contributions sharing the
same order of magnitude; this is actually what one would expect from random
initial conditions at the end of a quantum gravity stage. The flatness problem
can therefore be formulated as: why should we start from initial conditions in
the very early universe such that ρeff

k should be fine-tuned to a fraction 10−62

of the total energy density in the universe?
The whole problem comes from the fact that the ratio ρeff

k /ρr (or more

generally Ωk ≡ ρeff
k /ρcrit) increases with time: i.e., a flat universe is an unsta-

ble solution of the Friedmann equation. Is this a fatality, or can we choose a
framework in which the flat universe would become an attractor solution? The
answer to this question is yes, even in the context of ordinary general relativity.

127
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We noticed earlier that |Ωk| is proportional to (aH)−2, i.e. to ȧ−2. So, as long
as the expansion is decelerated, ȧ decreases and |Ωk| increases. If instead the
expansion is accelerated, ȧ increases and |Ωk| decreases: the curvature is diluted
and the universe becomes asymptotically flat.

Inflation is precisely defined as an initial stage during which the expansion
is accelerated. One of the motivations for inflation is simply that if this stage is
long enough, |Ωk| will be driven extremely close to zero, in such way that the
evolution between the end of inflation and today does not allow to reach again
|Ωk| ∼ 1.

We can search for the minimal quantity of inflation needed for solving the
flatness problem. For addressing this issue, we should study a cosmological
scenario where inflation takes place between times ti and tf such that |Ωk| ∼ 1
at ti, and |Ωk| ∼ 1 again today at t0. Let us compute the duration of inflation
in this model. This will give us an absolute lower bound on the needed amount
of inflation in the general case. Indeed, we could assume |Ωk| � 1 at ti (since
there could be a long stage of decelerated expansion before inflation); this would
just require more inflation. Similarly, we could assume |Ωk| � 1 today at t0,
requiring again more inflation.

So, we assume that between ti and tf the scale factor grows from ai to af ,
and for simplicity we will assume that the expansion is exactly De Sitter (i.e.,
exponential) with a constant Hubble rate Hi, so that the total density ρinf is
constant between ti and tf . We assume that at the end of inflation all the energy
ρinf is converted into a radiation energy ρr, which decreases like a−4 between
tf and t0. Finally, we assume that ρeff

k (which scales like a−2) is equal to ρinf

at ti and to ρr at t0. With such assumptions, we can write

ρeff
k (a0)

ρeff
k (ai)

=

(
ai
a0

)2

=
ρr(a0)

ρinf(ai)
=

ρr(a0)

ρinf(af )
=
ρr(a0)

ρr(af )
=

(
af
a0

)4

(7.3)

and we finally obtain the relation

af
ai

=
a0

af
. (7.4)

So, the condition for the minimal duration of inflation reads

af
ai
≥ a0

af
, (7.5)

which can be summarized in one sentence: there should be as much expansion
during inflation as after inflation. A convenient measure of expansion is the
so-called e-fold number defined as

N ≡ ln a . (7.6)

The scale factor is physically meaningful up to a normalization constant, so the
e-fold number is defined modulo a choice of origin. The amount of expansion
between two times t1 and t2 is specified by the number of e-folds ∆N = N2 −
N1 = ln(a2/a1). So, the condition on the absolute minimal duration of inflation
reads

(Nf −Ni) ≥ (N0 −Nf ) (7.7)

i.e., the number of inflationary e-folds should be greater or equal to the number
of post-inflationary e-folds ∆N ≡ N0 −Nf . There is no upper bound on (Nf −
Ni): for solving the flatness problem, inflation could be arbitrarily long.

It is easy to compute ∆N as a function of the energy density at the end of
inflation, ρr(af ). We know that today ρr(a0) is of the order of (10−4eV )4, and
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we will see in section 7.3.2 that the inflationary energy scale is at most of the
order of (1016GeV )4, otherwise current observations of CMB anisotropies would
have detected primordial gravitational waves. This gives

∆N = ln
a0

af
= ln

(
ρr(af )

ρr(a0)

)1/4

≤ ln 1029 ∼ 67 . (7.8)

We conclude that if inflation takes place around the 1016GeV scale, it should
last for a minimum of 67 e-folds. If it takes place at lower energy, the condition
is weaker. The lowest scale for inflation considered in the literature (in order
not to disturb too much the predictions of the standard inflationary scenario)
is of the order of 1 TeV. In this extreme case, the number of post-inflationary
e-folds would be reduced to

∆N ∼ ln 1016 ∼ 37 (7.9)

and the flatness problem can be solved with only 37 e-folds of inflation.

7.1.2 Horizon problem

We recall that the causal horizon dH(t1, t2) is defined as the physical distance
at time t2 covered by a particle emitted at time t1 and travelling at the speed
of light. If the origin of spherical comobile coordinates is chosen to coincide
with the point of emission, the physical distance at time t2 can be computed by
integrating over small distance elements dl between the origin and the position
r2 of one particle,

dH(t1, t2) =

∫ r2

0

dl =

∫ r2

0

a(t2)
dr√

1− k r2
. (7.10)

In addition, the geodesic equation for ultra-relativistic particles gives ds = 0,
i.e., dt = a(t)dr/

√
1− k r2, which can be integrated along the trajectory of the

particles, ∫ t2

t1

dt

a(t)
=

∫ r2

0

dr√
1− k r2

. (7.11)

We can now replace in the expression of dH and get

dH(t1, t2) = a(t2)

∫ t2

t1

dt

a(t)
. (7.12)

Usually, the result is presented in this form. However, for the following discus-
sion, it is particularly useful to eliminate the time from the integral by noticing
that dt = da/(aH),

dH(a1, a2) = a2

∫ a2

a1

da

a2H(a)
, (7.13)

where the Hubble parameter is seen now as a function of a. Let us assume that
t1 and t2 are two times during Radiation Domination (RD). We know from the
Friedmann equation that during RD on has H ∝ a−2, so we can parametrize
the Hubble rate as H(a) = H2 (a2/a)2. We obtain

dH(a1, a2) = a2

∫ a2

a1

da

a2
2H2

=
1

H2

(a2 − a1)

a2
. (7.14)

If the time t2 is much after t1 so that a2 � a1, the expression for the horizon
does not depend on a1,

dH(a1, a2) ' 1

H2
. (7.15)
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So, during RD, the horizon equals the Hubble radius at time t2 (in agreement
with the result of eq. (??) with n = 1/2). During matter domination, the
horizon is still close to the Hubble radius, modulo a factor of order one.

The horizon represents the causal distance in the universe. Suppose that a
physical mechanism is turned on at time t1. Since no information can travel
faster than light, the physical mechanism cannot affect distances larger than
dH(t1, t2) at time t2. So, the horizon provides the coherence scale of a given
mechanism. For instance, if a phase transition creates bubbles or patches con-
taining a given vacuum phase, the scale of homogeneity (i.e., the maximum size
of the bubble, or the scale on which a patch is nearly homogeneous) is given by
dH(t1, t2) where t1 is the time at the beginning of the transition.

Before photon decoupling, the Planck temperature of photons at a given
point depends on their local density. A priori, we can expect that the universe
will emerge from a quantum gravity stage with random values of the local den-
sity. The coherence length, or characteristic scale on which the density is nearly
homogeneous, is given by dH(t1, t2). We have seen that if t1 and t2 are two
times during radiation domination, this quantity cannot exceed RH(t2), even in
the most favorable limit in which t1 is chosen to be infinitely close to the initial
singularity. We conclude that at time t2, the photon temperature should not be
homogeneous on scales larger than RH(t2).

CMB experiments map the photon temperature on our last-scattering-surface
at the time of photon decoupling. So, we expect CMB maps to be nearly homo-
geneous on a characteristic scale RH(tdec). This scale is very easy to compute:
knowing that H(t0) is of the order of (h/3000) Mpc−1 with h ' 0.7, we can ex-
trapolate H(t) back to the time of equality, and find that the distance RH(tdec)
subtends an angle of order of a few degrees in the sky - instead of encompassing
the diameter of the last scattering surface. So, it seems that the last scattering
surface is composed of several thousands causally disconnected patches. How-
ever, the CMB temperature anisotropies are only of the order of 10−5: in other
words, the full last scattering surface is extremely homogeneous. This appears
as completely paradoxical in the framework of the Hot Big Bang scenario.

What is the origin of this problem? When we computed the horizon, we inte-
grated (a2H)−1 over da and found that the integral was converging with respect
to the boundary a1: so, even by choosing the initial time to be infinitely early,
the horizon is bounded by a function of a2. If the integral was instead divergent,
we could obtain an infinitely large horizon at time t2 simply by choosing a1 to
be small enough. The convergence of the integral∫ a2

a1

da

a2H(a)
=

∫ a2

a1

da

aȧ
(7.16)

with respect to a1 → 0 depends precisely on the fact that the expansion is ac-
celerated or decelerated. For linear expansion, the integrand is 1/a, the limiting
case between convergence and divergence. If it is decelerated, ȧ decreases and
the integral converges. If it is accelerated, ȧ increases and the integral diverges
in the limit a1 → 0.

So, if the radiation dominated phase is preceded by an infinite stage of
accelerated expansion, one can reach an arbitrarily large value for the horizon
at the time of decoupling. In fact, in order to explain the homogeneity of the
last scattering surface, we only need to boost the horizon by a factor of ∼ 103

with respect to the Hubble radius at that time. This can be fulfilled with a
rather small amount of accelerated expansion.

Let us take an exemple and assume that between ai and af , the acceleration
is exponential, a = eαt. In this case, the Hubble parameter ȧ/a is constant over
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this period: let’s call it Hinf . The horizon computed between ai and af reads:

dH(ai, af ) = af

∫ af

ai

da

a2Hinf
=

1

Hinf

(
af
ai
− 1

)
' 1

Hinf

af
ai

. (7.17)

So, at the end of inflation, the horizon is larger than the Hubble radius RH =
1/Hinf by a factor af/ai, i.e, by the exponential of the number of inflationary
e-folds. After, the horizon will keep growing in the usual way,

dH(ai, a2) = a2

∫ a2

ai

da

a2H(a)

=
a2

Hinf

(
1

ai
− 1

af

)
+ a2

∫ a2

af

da

a2H(a)

' 1

Hinf

a2

ai
+

1

H2
, (7.18)

and remains much larger than the Hubble radius 1
H2

.
The condition for solving the horizon problem can be shown to be exactly

the same as for solving the flatness problem: the number of inflationary e-fold
should be at least equal to that of post-inflationary e-folds. If it is larger, then
the size of the observable universe is even smaller with respect to the causal
horizon.

7.1.3 Origin of perturbations

Since our universe is inhomogeneous, one should find a physical mechanism
explaining the origin of cosmological perturbations. Inhomogeneities can be
expanded in comoving Fourier space. Their physical wavelength

λ(t) =
2πa(t)

k
(7.19)

is stretched with the expansion of the universe. During radiation domination,
a(t) ∝ t1/2 and RH(t) ∝ t. So, the Hubble radius grows with time faster than
the perturbation wavelengths. We conclude that observable perturbations were
originally super-Hubble fluctuations (i.e., λ > RH ⇔ k < 2πaH). Actually,
the discussion of the horizon problem already showed that at decoupling the
largest observable fluctuations are super-Hubble fluctuations. Even if we take
a smaller scale, e.g. the typical size of a galaxy cluster λ(t0) ∼ 1 Mpc, we find
that the corresponding fluctuations were clearly super-Hubble fluctuations for
instance at the time of Nucleosynthesis. We have seen that in the Hot Big Bang
scenario (without inflation) the Hubble radius RH(t2) gives an upper bound
on the causal horizon dH(t1, t2) for whatever value of t1. So, super-Hubble
fluctuations are expected to be out of causal contact. The problem is that it is
impossible to find a mechanism for generating coherent fluctuations on acausal
scales. There are two possible solutions to this issue:

• we can remain in the framework of the Hot Big Bang scenario and assume
that perturbations are produced causally when a given wavelength enters
into the horizon. In this case, there should be not coherent fluctuations
on super-Hubble scales, i.e. the power spectrum of any kind of pertur-
bation should fall like white noise in the limit k � aH. This possibility
is now ruled out for at least two reasons. First, the observation of CMB
anisotropies on angular scales greater than one degree (i.e., super-Hubble
scales at that time) is consistent with coherent fluctuations rather than
white noise. Second, the observations of acoustic peaks in the power spec-
trum of CMB anisotropies is a clear proof that cosmological perturbations
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are generated much before Hubble crossing, in such way that all modes
with a given wavelength entering inside the Hubble radius before photon
decoupling experience coherent acoustic oscillations (i.e. oscillate with the
same phase).

• we can modify the cosmological scenario in such way that all cosmological
perturbations observable today were inside the causal horizon when they
were generated at some early time (we will study a concrete generation
mechanism in section 7.3).

So, our goal is to find a paradigm such that the largest wavelength observable
today, which is λmax(t0) ∼ RH(t0) (see section ??), was already inside the
causal horizon at some early time ti. If before ti the universe was in decelerated
expansion, then the causal horizon at that time was of order RH(ti). How can
we have λmax ≤ RH at ti and λmax ∼ RH today? If between ti and t0 the
universe is dominated by radiation or matter, it is impossible since the Hubble
radius grows faster than the physical wavelengths. However, in general,

λ(t)

RH(t)
=

2πa(t)

k

ȧ(t)

a(t)
=

2πȧ(t)

k
, (7.20)

so that during accelerated expansion the physical wavelengths grow faster than
the Hubble radius. So, if between some time ti and tf the universe experiences
some inflationary stage, it is possible to have λmax < RH at ti: the scale λmax

can then exit the Hubble radius during inflation and re-enter approximately
today (see Figure 7.1).

It is easy to show that once again, the minimal number of inflationary e-
folds requested for solving this problem should be at least equal to that of
post-inflationary e-folds.

One could argue that the argument on the origin of fluctuations is equivalent
to that of the horizon problem, reformulated in a different way. Anyway, for
understanding inflation it is good to be aware of the two arguments, even if they
are not really independent from each other.

7.1.4 Monopoles

We will not enter here into the details of the monopole problem. Just in a
few words, some phase transitions in the early universe are expected to create
“dangerous relics” like magnetic monopoles, with a very large density which
would dominate the total density of the universe. These relics are typically
non-relativistic, with an energy density decaying like a−3: so, they are not
diluted, and the domination of radiation and ordinary matter can never take
place.

Inflation can solve the problem provided that it takes place after the creation
of dangerous relics. During inflation, monopoles and other relics will decay like
a−3 (a−4 in the case of relativistic relics) while the leading vacuum energy is
nearly constant: so, the energy density of the relics is considerably diluted,
typically by a factor (af/ai)

3, and today they are irrelevant. The condition
on the needed amount of inflation is much weaker than the condition obtained
for solving the flatness problem, since dangerous relics decay faster than the
effective curvature density (ρeff

k ∝ a−2).

7.2 Slow-roll scalar field inflation

So, the first three problems of section 7.1 can be solved under the assumption
of a long enough stage of accelerated expansion in the early universe. How can
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Figure 7.1: Comparison of the Hubble radius with the physical wavelength of a
few cosmological perturbations. During the initial stage of accelerated expansion
(called inflation), the Hubble radius grows more slowly than each wavelength.
So, cosmological perturbations originate from inside RH . Then, the wavelength
of each mode grows larger than the Hubble radius during inflation and re–enters
during radiation or matter domination.

this be implemented in practice?
First, by combining the Friedman equation (2.47) in a flat universe with the

conservation equation (2.48), it is easy to find that

ä > 0 ⇒ ρ+ 3p < 0. (7.21)

What type of matter corresponds to such an unusual relation between density
and pressure? A positive cosmological constant can do the job:

pΛ = −ρΛ ⇒ ρΛ + 3pΛ = −2ρΛ < 0. (7.22)

But since a cosmological constant is... constant, it cannot be responsible for
an initial stage of inflation: otherwise this stage would go on forever, and there
would be no transition to radiation domination.

Let us consider instead the case of a scalar field (i.e., a field of spin zero,
represented by a simple function of time and space, and invariant under Lorentz
transformations). The general action for a scalar field in curved space-time

S = −
∫
d4x
√
|g| (Lg + Lϕ) (7.23)

involves the Lagrangian of gravitation

Lg =
R

16πG
(7.24)

and that of the scalar field

Lϕ =
1

2
∂µϕ∂

µϕ− V (ϕ) =
1

2
gµν∂µϕ∂νϕ− V (ϕ) (7.25)

where V (φ) is the scalar potential. The variation of the action with respect to
gµν enables to define the energy-momentum tensor

Tµν = ∂µϕ∂νϕ− Lϕgµν (7.26)
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and the Einstein tensor Gµν , which are related through the Einstein equations

Gµν = 8πG Tµν . (7.27)

Instead, the variation of the action with respect to ϕ gives Klein-Gordon equa-
tion

1√
|g|
∂µ

[√
|g|∂µϕ

]
+
∂V

∂ϕ
= 0 . (7.28)

The same equation could have been obtained using a particular combination
of the components of Tµν and their derivatives, which vanish by virtue of the
Bianchi identities (in other word, the Klein-Gordon equation is contained in the
Einstein equations).

Let us now assume that the homogeneous Friedmann universe with flat met-
ric

gµν = diag
(
1,−a(t)2,−a(t)2,−a(t)2

)
(7.29)

is filled by a homogeneous classical scalar field ϕ̄(t). One can show that the
corresponding energy-momentum tensor is diagonal, T νµ = diag(ρ,−p,−p,−p),
with

ρ =
1

2
˙̄ϕ

2
+ V (ϕ) , (7.30)

p =
1

2
˙̄ϕ

2 − V (ϕ) . (7.31)

The Friedmann equation reads

G0
0 = 3H2 = 8πG ρ (7.32)

and the Klein-Gordon equation

¨̄ϕ+ 3H ˙̄ϕ+
∂V

∂ϕ
(ϕ̄) = 0 . (7.33)

These two independent equations specify completely the evolution of the system.
However it is worth mentioning that the full Einstein equations provide another
relation

Gii =

(
2
ä

a
+

(
ȧ

a

)2
)

= −8πG p . (7.34)

The combination Ġ0
0 +3H(Ġ0

0−Gii) vanishes (it is one of the Bianchi identities),
and gives a conservation equation ρ̇+ 3H(ρ+ p) = 0, which is nothing but the
Klein-Gordon equation. Finally, the combination Gii−G0

0 provides a very useful
relation

Ḣ = −4πG ˙̄ϕ
2

(7.35)

which is consistent with the fact that the Hubble parameter can only decrease.

The condition p < −ρ/3 reads ˙̄ϕ
2
< V : when the potential energy dominates

over the kinetic energy, the universe expansion is accelerated. In the limit of zero
kinetic energy, the energy-momentum tensor would be that of a cosmological
constant, and the expansion would be exponential (this is called “De Sitter
expansion”) and everlasting. For a long, finite stage of acceleration we must
require that the first slow-roll condition

1

2
˙̄ϕ

2 � V (ϕ̄) (7.36)

holds over an extended period. Since the evolution of the scalar field is given by
a second-order equation, the above condition could apply instantaneously but
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not for an extended stage, in particular in the case of oscillatory solutions. If
we want the first slow-roll condition to hold over an extended period, we must
impose that the time-derivative of this condition also holds (in absolute value).
This gives the second slow-roll condition

| ¨̄ϕ| �
∣∣∣∣∂V∂ϕ (ϕ̄)

∣∣∣∣ (7.37)

which can be rewritten, by virtue of the Klein-Gordon equation, as

| ¨̄ϕ| � 3H | ˙̄ϕ| . (7.38)

When these two conditions hold, the Friedmann and Klein-Gordon equations
become

3H2 ' 8πG V (ϕ̄) , (7.39)

˙̄ϕ ' − 1

3H

∂V

∂ϕ
(ϕ̄) . (7.40)

The two slow-roll conditions can be rewritten as conditions either on the slow-
ness of the variation of H(t), or on the flatness of the potential V (ϕ).

So, a particular way to obtain a stage of accelerated expansion in the early
universe is to introduce a scalar field, with a flat enough potential. Scalar field
inflation has been proposed in 1979 by Guth. Starting from 1979 and during the
80’s, most important aspects of inflation were studied in details by Starobinsky,
Guth, Hawking, Linde, Mukhanov and other people. Finally, during the 90’s,
many ideas and models were proposed in order to make contact between inflation
and particle physics. The purpose of scalar field inflation is not only to provide
a stage of accelerated expansion in the early universe, but also, a mechanism
for the generation of matter and radiation particles, and another mechanism for
the generation of primordial cosmological perturbations. Let us summarize how
it works in a very sketchy way.

Slow-roll. First, let us assume that just after the initial singularity, the energy
density is dominated by a scalar field, with a potential flat enough for slow–
roll. In any small region where the field is approximately homogeneous and
slowly–rolling, accelerated expansion takes place: this small region becomes ex-
ponentially large, encompassing the totality of the present observable universe.
Inside this region, the causal horizon becomes much larger than the Hubble ra-
dius, and any initial spatial curvature is driven almost to zero – so, some of the
main problems of the standard cosmological model are solved. After some time,
when the field approaches the minimum its potential, one of the two slow-roll
conditions breaks down, and inflation ends: the expansion becomes decelerated
again.

Reheating. At the end of inflation, the kinetic energy of the field is bigger
than the potential energy; in general, the field is quickly oscillating around the
minimum of the potential. According to the laws of quantum field theory, the
oscillating scalar field will decay into fermions and bosons. This could explain
the origin of all the particles filling our universe. The particles probably reach
quickly a thermal equilibrium: this is why this stage is called “reheating”.

Generation of primordial perturbations. Finally, the theory of scalar field
inflation also explains the origin of cosmological perturbations – the ones leading
to CMB anisotropies and large scale structure formation. Using again quantum
field theory in curved space–time, it is possible to compute the amplitude of
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the small quantum fluctuations of the scalar field ϕ (as well as the quantum
fluctuations of the metric hµν). The physical wavelengths of these fluctuations
grow quickly, like in figure 7.1. So, they are initially inside the Hubble radius,
where we can apply the laws of quantum mechanics in flat space-time (as long
as k � aH, the modes do not see the curvature of space-time). In the opposite
limit, when a wavelength is stretched to scales larger than the Hubble length, it is
possible to show that the modes experience a kind of quantum–to–classical tran-
sition, in the sense that they become indistinguishable from classical stochastic
fluctuations: hence, the primordial fluctuations have a random distribution (as
expected), but we don’t need to employ the formalism of quantum mechanics
(wave functions, etc.) in order to describe their statistics. In addition, the
initial quantum fluctuations δϕ are assumed to be vacuum fluctuations (cor-
responding to the fundamental state of the field δϕ). As a consequence, the
probability distribution of each mode δϕ(k) after the transition can be showed
to be a Gaussian, depending only on k. Hence, at a given time, all information
about the statistics of the field is contained in the power spectrum 〈|ϕ(k)|2〉,
which is a function of k.

7.3 Inflationary perturbations

7.3.1 Scalar perturbations

The perturbations of the scalar field δϕ are coupled with those of the scalar
metric fluctuations: for instance, φ and ψ in the longitudinal gauge. At first
order in perturbation theory, it is easy to show that φ = ψ, so the problem of
scalar perturbations during inflation reduces to the evolution of two quantities
only, δϕ and φ. In addition, the linearized Einstein equations provides a relation
between δϕ and φ: they are not independent, and their evolution is dictated by
a single equation of motion.

As explained above, quantum field theory allows to exactly follow the evo-
lution and the quantum–to–classical transition of the fields δϕ and φ during
inflation. So, it is possible to compute exactly the power spectrum of δϕ and φ
for observable modes, i.e. on wavelengths much larger than the Hubble radius
at the end of inflation. But how can we related these spectra to the initial
conditions at the beginning of radiation domination, after the end of inflation?

We could fear that such a relation could be very difficult to compute, and
could depend on the mechanism through which the scalar field decays into ra-
diation and matter... Fortunately, this is not the case: the relation between the
spectrum of fluctuations at the end of inflation and at the beginning of radia-
tion domination is trivial. The reason is that when the wavelength of a mode
φ(k) becomes much larger than the Hubble radius, the perturbation freezes
out. Hence it is not affected by the decay of the scalar field during reheating.
But when the radiation and matter particles are formed during reheating, they
are sensitive to the gravitational potential, and more particles accumulate in
the potential wells. So, the gravitational potential behaves like a mediator be-
tween the scalar field perturbations during inflation and the radiation/matter
perturbations in the radiation/matter–dominated universe. If we can compute
the power spectrum 〈|φ(k)|2〉 at the end of inflation, we are done, because this
power spectrum remains the same at the beginning of radiation domination on
super-Hubble scale; then the initial condition described in eq. (??) apply, and
the evolution of all radiation/matter perturbations is entirely determined.

It is far beyond the level of these notes to compute the evolution of primordial
perturbations during inflation. However, we should stress that it can be studied
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in a very precise way using quantum field theory. The result for the primordial
spectrum of scalar metric perturbations during inflation/radiation domination
and on super-Hubble scales k � aH reads:

〈|φ(k)|2〉 = 2

(
8πG

3k

)3
V 3

V ′2
, (7.41)

where V and V ′, which are both functions of ϕ, should be evaluated with the
value of the field corresponding to the time of Hubble crossing during inflation
for each mode k, i.e., with the value ϕ̄(t) at the time t when k = aH. Hence, the
primordial spectrum depends on k not only through the above k−3 factor, but
also through the V 3/V ′

2
factor. However, since the field is in slow-roll, V 3/V ′

2

does not vary a lot between the time at which the largest and the smallest
observable wavelengths cross the Hubble radius during inflation. Hence, the
dependence of V 3/V ′

2
on k is small, and the above spectrum is close to a scale-

invariant spectrum, 〈|φ(k)|2〉 ∝ k−3. However, the deviation from exact scale-
invariance (i.e. the value of the spectral index n minus one) depends crucially on

the evolution of this ratio V 3/V ′
2

with time and scale. By taking the derivative
of the above equation, one could show that n− 1 is indeed related to the ratios
V ′′/V and V ′/V evaluated when observable scales cross the horizon.

In the previous chapters, we saw that CMB and large scale structure observa-
tions allow to reconstruct the cosmological evolution during radiation/matter/Λ
domination, as well as the primordial spectrum 〈|φ(k)|2〉. In particular, the am-
plitude A and spectral index n (defined in eq. (??)) of the primordial spectrum
〈|φ(k)|2〉 can be measured. According to the above results, these observations

provide a measurement of V 3/V ′
2

and of its evolution with ϕ within a small
interval. Hence the potential V (φ) can be reconstructed to some extent from
observations. It is quite remarkable that current observations provide a way
to constrain the physical mechanism governing the evolution of the universe at
extremely high energy (considerably higher than during Nucleosynthesis) and
extremely early times (a tiny fraction of second after the initial singularity).

7.3.2 Tensor perturbations (gravitational waves)

The same mechanism which produces stochastic fluctuations of δϕ and φ (more
precisely, of the scalar metric perturbations) on cosmological scales produces
also stochastic fluctuations of the tensor metric perturbations, i.e., of the tensor
hij defined in eq. (??). These perturbations are called gravitational waves, since
inside the Hubble radius they have oscillatory solutions: there are deformation
of our space-time manifold, propagating like waves with the velocity of light.
Unlike scalar perturbations, they do not couple with matter fields or scalar fields
within linear perturbation theory. Like electromagnetic waves, gravitational
waves can propagate in the vacuum without being damped.

It is possible to compute the primordial spectrum of gravitational waves (i.e.,
the primordial spectrum of the components of hij) using the same formalism as
for the scalar metric fluctuation φ. The result reads

〈|h(k)|2〉 =
2

3
(8πG)

2
k−3V , (7.42)

where V is evaluated like for scalar perturbations, i.e. with the value ϕ̄(t) at
the time t when k = aH. Here h stands for the components of hij (we don’t
give the exact definition of h here for concision).

Hence, inflation is also expected to fill the universe with a random back-
ground of gravitational waves which could be detected today, at least in prin-
ciple. Unfortunately, this background of gravitational waves is so low that its
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detection is unlikely with the current generation (and even the next generation)
of gravitational wave detectors (VIRGO, LIGO, etc.) However, there is a chance
to detect it in the CMB: gravitational waves of primordial origin are expected
to contribute to the CMB spectrum on the largest angular scales, as shown in
figure 7.2. The shape of the tensor contribution to the CMB spectrum can be
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Figure 7.2: The red solid line shows the same reference CMB temperature
spectrum as in the previous figures. The dashed green line shows the additional
contribution from tensor perturbations for the same cosmological model, assum-
ing a primordial tensor amplitude such that roughly one third of the observed
CMB power spectrum on large angular scales would come from tensors. The
dashed blue curve shows the total spectrum which would be observed in this
model.

computed with the same kind of numerical code as for scalar perturbations. The
main uncertainty is not on the shape, but on the amplitude of this contribution.
Equation (7.42) shows that the amplitude depends on V during inflation, i.e.
on the energy scale of inflation. The condition for the tensor contribution to be
roughly of the same order as the scalar one in the large scale CMB spectrum
is roughly that V ∼ (1016GeV)4 during inflation, i.e. that the energy scale of
inflation is of the order of 1016GeV (coincidentally, this turns out to be the
order of magnitude of GUT symmetry breaking).

So far, the observation of CMB anisotropies is consistent with a spectrum
arising only from scalar perturbations. A large tensor contribution cannot be
present, because it would lead to an increase in the ratio between the amplitude
of the large-scale plateau region and that of the small-scale peak region, at odds
with observation. Hence, CMB temperature maps allow to put an upper limit
on the energy scale of inflation: roughly, it has to be smaller than 1016GeV.
Future observations of the CMB will be able to test the possible contribution of
tensors with better precision: hence, in the next years, cosmologists hope either
to push this bound further down, or to detect the background of primordial
gravitational waves produced by inflation.
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7.4 Success of the theory of inflation

Let us summarize the positive outcomes of the theory of inflation:

1. it provides a simple solution to the flatness, horizon and monopole prob-
lems.

2. it includes in some unavoidable way a mechanism for producing primordial
fluctuations starting from simple initial conditions, i.e. from a perfectly
homogeneous scalar field with vacuum fluctuations dictated by quantum
mechanics.

3. these perturbations have almost automatically the properties which are
necessary in order to explain observations: they are generated very early
and on super-Hubble scales; they have a Gaussian statistics and obey to
adiabatic initial conditions; they have a nearly scale-invariant primordial
spectrum.

4. inflation provides a mechanism for the generation of a thermal bath of
particles in the early universe (the so-called reheating phase occurring
after or during the scalar field oscillations and decay). Unfortunately, this
mechanism is very difficult to probe experimentally: reheating does not
have clear observable signatures, unlike the mechanism for the generation
of primordial fluctuations.

5. thanks to the theory of inflation, it is possible to provide a self-consitent
explanation for the global properties of our universe without making any
assumption about quantum gravity (during inflation, one quantizes only
metric perturbations, not the metric itself: hence inflation is based on
quantum field theory in curved space-time, but NOT on quantum gravity).
In fact, in inflationary cosmology, what happens before inflation is usually
not important: our universe only keeps track of what happened during
the last ∼60 e-folds of inflation and after inflation.

The third point is the most convincing argument in favor of inflation. Before
the first observations of CMB anisotropies, it was impossible to know whether
our universe was described by such initial conditions (primordial perturbations
on super-Hubble scales, Gaussian, adiabatic and nearly scale-invariant). So,
cosmologist were studying various possible scenarios for the generation of per-
turbations. The main alternative would be to assume that they are generated
during a phase transition (e.g. a spontaneous symmetry breaking). In this
case, they would appear inside the Hubble radius and would be non-Gaussian,
non-adiabatic and far from scale invariance. As we have seen before, the ob-
servation of CMB anisotropies has confirmed the four generic predictions of
inflation, as far as primordial perturbations are concerned. Alternative theories
are discarded (at least as a dominant mechanism for the generation of primordial
perturbations) and most people agree that inflation is a very likely scenario. It
is a striking example of a predictive and elegant theory (with few assumptions
leading to many observable consequences validated by observations).

The negative outcomes of the theory of inflation are the following:

1. inflation is based on a scalar field (usually called the inflaton), but we
don’t know anything about its origin and its relationship with other known
fields/particles. However it is possible to assume some connection between
inflation and particle physics (the inflaton could be a Higgs field, the size
of an extra dimension, etc.) The difficulty is then to find a good reason for
which the inflaton potential would be flat enough for fulfilling the slow-roll
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conditionc. This argument readily excludes the possibility that the infla-
ton would be the usual electroweak Higgs field (in the context of standard
particle physics and gravity). However, it could still be a component of the
Higgs field associated with the breaking of the GUT symmetry (although
this question is very subtle and related to supersymmetry, supergravity,
etc.) There are many interesting research activities in this direction.

2. inflation predicts a background of gravitational waves which have not been
detected. Hopefully, this is only a matter of sensitivity: future CMB ex-
periments might see these primordial gravitational waves. If they do, there
would be one more very convincing evidence in favor of inflation (primor-
dial gravitational waves would be the “smoking gun” of inflation), and the
previous issue would become much more interesting and promising, since
we would finally know the energy scale of inflation, as well as the details
of the inflaton potential V (ϕ) within some interval ∆ϕ. As long as we
don’t see these primordial gravitational waves, we can only constrain the
function V 3/V ′2 (see eq. (7.41)). There exist one-parameter families of
potentials all giving the same combination V 3/V ′2, and hence the same
primordial scalar spectrum. Hence, the scale of inflation will remain un-
known until primordial gravitational waves are observed. Of course, this
might never occur, in which case the theory of inflation would not be ex-
cluded, but its existence would not be proved or disproved as convincingly
as one would like to.



Conclusions

Modern cosmology offers a detailed and self-consistent scenario, able to explains
most (if not all) observations of the global properties of the universe. The most
impressive success of the past years is the fact that cosmological perturbation
theory (with initial conditions motivated by inflation) allowed to predict the
non-trivial spectrum of CMB temperature fluctuations much before it was ac-
tually observed; the good agreement between, on the one hand, the CMB data
obtained by WMAP and more recently by Planck, and on the other hand, the
predictions of the minimal ΛCDM scenario, is one of the greatest successes of
modern science.

However, the observations of the last decade reveal that the universe contains
nearly 26% of dark matter and 69% of cosmological constant (or of another fluid
leading to accelerated expansion today, generically called dark energy), which
are both of completely unknown nature and origin. This two issues are now
the main challenges in cosmology (the third challenge being to understand the
nature and origin of the inflaton, by first measuring its energy scale through
CMB B-polarisation).
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