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Détaché au CERN (Genève) et a l’EPFL (Lausanne)

February 12, 2015



Contents

1 Introduction to the universe expansion 3
1.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The Doppler effect . . . . . . . . . . . . . . . . . . . 3
1.1.2 The discovery of the galactic structure . . . . . . . . 4
1.1.3 The Cosmological Principle . . . . . . . . . . . . . . 5

1.2 The Hubble Law . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Hubble’s discovery . . . . . . . . . . . . . . . . . . . 6
1.2.2 Homogeneity and inhomogeneities . . . . . . . . . . 6

1.3 The universe Expansion from Newtonian Gravity . . . . . . 8
1.3.1 Newtonian Gravity versus General Relativity . . . . 8
1.3.2 The rate of expansion from Gauss theorem . . . . . 9
1.3.3 The limitations of Newtonian predictions . . . . . . 11

2 Homogeneous Cosmology 13
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Chapter 1

Introduction to the
universe expansion

1.1 Historical overview

1.1.1 The Doppler effect

At the beginning of the XX-th century, the understanding of the global
structure of the universe beyond the scale of the solar system was still
relying on pure speculation. In 1750, with a remarkable intuition, Thomas
Wright noticed that the luminous stripe observed in the night sky and
called the Milky Way could be a consequence of the spatial distribution of
stars: they could form a thin plate, what we call now a galaxy. At that
time, with the help of telescopes, many faint and diffuse objects had been
already observed and listed, under the generic name of nebulae - in addition
to the Andromeda nebula which is visible by eye, and has been known
many centuries before the invention of telescopes. Soon after the proposal
of Wright, the philosopher Emmanuel Kant suggested that some of these
nebulae could be some other clusters of stars, far outside the Milky Way.
So, the idea of a galactic structure appeared in the mind of astronomers
during the XVIII-th century, but even in the following century there was
no way to check it on an experimental basis.

At the beginning of the nineteenth century, some physicists observed the
first spectral lines. In 1842, Johann Christian Doppler argued that if an
observer receives a wave emitted by a body in motion, the wavelength that
he will measure will be shifted proportionally to the speed of the emitting
body with respect to the observer (projected along the line of sight):

∆λ/λ = ~v.~n/c (1.1)

where c is the celerity of the wave (See figure 1.1). He suggested that this
effect could be observable for both light and sound waves. The former
assumption was checked experimentally in 1868 by Sir William Huggins,
who found that the spectral lines of some neighboring stars were slightly
shifted toward the red or blue ends of the spectrum. So, it was possible to
know the projection along the line of sight of star velocities, vr, using

z ≡ ∆λ/λ = vr/c (1.2)

where z is called the redshift (it is negative in case of blue-shift) and c is
the speed of light. Note that the redshift gives no indication concerning
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4 CHAPTER 1. INTRODUCTION TO THE UNIVERSE EXPANSION
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Figure 1.1: The Doppler effect.

the distance of the star. At the beginning of the XX-th century, with
increasingly good instruments, people could also measure the redshift of
some nebulae. The first measurements, performed on the brightest objects,
indicated some arbitrary distribution of red and blue-shifts, like for stars.
Then, with more observations, it appeared that the statistics was biased
in favor of red-shifts, suggesting that a majority of nebulae were going
away from us, unlike stars. This was raising new questions concerning the
distance and the nature of nebulae.

1.1.2 The discovery of the galactic structure

In the 1920’s, Leavitt and Shapley studied some particular stars, called the
cepheids, known to have a periodic time-varying luminosity. They could
show that the period of cepheids is proportional to their absolute luminos-
ity L (the absolute luminosity is the total amount of light emitted by unit
of time, i.e., the flux integrated on a closed surface around the star). This
relation is well understood from current knowledge on stellar physics (it
is due to the cycle of ionization of helium in the cepheids’s athmosphere).
Leavitt and Shapley were already able to measure the coefficient of pro-
portionality (calibrated with the nearest cepheids, for which the parallax
method can be employed; the parallax is half the angle under which a star
appears to move when the earth makes one rotation around the sun). So,
by measuring the apparent luminosity, i.e. the flux l per unit of surface
through an instrument pointing to the star, it was easy to get the distance
of the star r from

L = l ×
(

4πr2
)

. (1.3)

Using this technique, it became possible to measure the distance of various
cepheids inside our galaxies, and to obtain the first estimate of the charac-
teristic size of the stellar disk of the Milky Way (known today to be around
80.000 light-years).

But what about nebulae? In 1923, the 2.50m telescope of Mount Wilson
(Los Angeles) allowed Edwin Hubble to make the first observation of indi-
vidual stars inside the brightest nebula, Andromeda. Some of these were
found to behave like cepheids, leading Hubble to give an estimate of the
distance of Andromeda. He found approximately 900.000 light-years (but
later, when cepheids were known better, this distance was established to be
around 2 million light-years). That was the first confirmation of the galac-
tic structure of the universe: some nebulae were likely to be some distant
replicas of the Milky Way, and the galaxies were separated by large voids.
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Figure 1.2: Homogeneous expansion on a two-dimensional grid. Some
equally-spaced observers are located at each intersection. The grid is plot-
ted twice. On the left, the arrays show the expansion flow measured by
A; on the right, the expansion flow measured by B. If we assume that the
expansion is homogeneous, we get that A sees B going away at the same
velocity as B sees C going away. So, using the additivity of speeds, the
velocity of C with respect to A must be twice the velocity of B with respect
to A. This shows that there is a linear relation between speed and distance,
valid for any observer.

1.1.3 The Cosmological Principle

This observation, together with the fact that most nebulae are redshifted
(excepted for some of the nearest ones like Andromeda), was an indication
that on the largest observable scales, the universe was expanding. At the
beginning, this idea was not widely accepted. Indeed, in the most general
case, a given dynamics of expansion takes place around a center. Seeing the
universe in expansion around us seemed to be an evidence for the existence
of a center in the universe, very close to our own galaxy.

Until the middle age, the Cosmos was thought to be organized around
mankind, but the common wisdom of modern science suggests that there
should be nothing special about the region or the galaxy in which we leave.
This intuitive idea was formulated by the astrophysicist Edward Arthur
Milne as the “Cosmological Principle”: the universe as a whole should be
homogeneous, with no privileged point playing a particular role.

Was the apparently observed expansion of the universe a proof against
the Cosmological Principle? Not necessarily. The homogeneity of the uni-
verse is compatible either with a static distribution of galaxies, or with a
very special velocity field, obeying to a linear distribution:

~v = H ~r (1.4)

where ~v denotes the velocity of an arbitrary body with position ~r, and H
is a constant of proportionality. An expansion described by this law is still
homogeneous because it is left unchanged by a change of origin. To see
this, one can make an analogy with an infinitely large rubber grid, that
would be stretched equally in all directions: it would expand, but with no
center (see figure 1.2). This result is not true for any other velocity field.
For instance, the expansion law

~v = H |~r| ~r (1.5)

is not invariant under a change of origin: so, it has a center.
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1.2 The Hubble Law

1.2.1 Hubble’s discovery

So, a condition for the universe to respect the Cosmological Principle is that
the speed of galaxies along the line of sight, or equivalently, their redshift,
should be proportional to their distance. Hubble tried to check this idea,
still using the cepheid technique. He published in 1929 a study based on
18 galaxies (in which cepheids could be seen), for which he had measured
both the redshift and the distance. His results were showing roughly a linear
relation between redshift and distance (see figure 1.3). He concluded that
the universe was in homogeneous expansion, and gave the first estimate of
the coefficient of proportionality H , called the Hubble parameter.

Hubble’s measurements were rather unprecise. It is now understood
that his measurement were not based on regular cepheids. Moreover, at
distances of the order of 1 Mpc probed by Hubble’s experiment (Mpc de-
notes a Mega-parsec, the unity of distance usually employed for cosmology;
1 Mpc ≃ 3×1022m ≃ 3×106 light-years; the proper definition of a parsec is
“the distance to an object with a parallax of one arcsecond”), peculiar veloc-
ities tend to dominate over the expansion flow. So, Hubble’s conclusion was
obviously quite biased. However, this experiment is generally considered
as the starting point of experimental cosmology. Since then, many similar
experiments have been performed with better and better techniques and
instruments, using not only cepheids but also supernovae and other “stan-
dard candles” (i.e., objects which absolute magnitude can be inferred in
some way, without knowing their distance) at larger and lager distances.
Recent data (like that shown in figure 1.4) leave no doubt about the pro-
portionality, but there is still an uncertainty concerning the exact value of
H . The Hubble constant is generally parametrized as

H = 100 h km s−1Mpc−1 (1.6)

where h is the dimensionless “reduced Hubble parameter”, currently known
to be in the range h = 0.742 ± 0.036 (at the 68% confidence level) from
astrophysical observations (Astrophys.J. 699 (2009) 539). As we shall see
later most cosmological observations confirm this range. So, for instance, a
typical galaxy located at 10 Mpc goes away at a speed close to 740 km s−1.

1.2.2 Homogeneity and inhomogeneities

Before leaving this section, we should clarify one point about the “Cosmo-
logical Principle”, i.e., the assumption that the universe is homogeneous.
Of course, nobody has ever claimed that the universe was homogeneous on
small scales, since compact objects like planets or stars, or clusters of stars
like galaxies are inhomogeneities in themselves. The Cosmological Prin-
ciple only assumes homogeneity after smoothing over some characteristic
scale. By analogy, take a grid of step l (see figure 1.5), and put one object
in each intersection, with a randomly distributed mass (with all masses
obeying to the same distribution of probability). Then, make a random
displacement of each object (again with all displacements obeying to the
same distribution of probability). At small scales, the mass density is obvi-
ously inhomogeneous for three reasons: the objects are compact, they have
different masses, and they are separated by different distances. However,
since the distribution has been obtained by performing a random shift in
mass and position, starting from an homogeneous structure, it is clear even
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Figure 1.3: The diagram published by Hubble in 1929. The labels of the
horizontal (resp. vertical) axis are 0, 1, 2 Mpc (resp. 0, 500, 1000 km.s−1).
Hubble estimated the expansion rate to be 500 km.s−1Mpc−1. Today, it is
known to be around 70 km.s−1Mpc−1.

intuitively that the mass density smoothed over some large scale will remain
homogeneous again.

The Cosmological Principle should be understood in this sense. Let us
suppose that the universe is almost homogeneous at a scale correspond-
ing, say, to the typical intergalactic distance, multiplied by thirty or so.
Then, the Hubble law doesn’t have to be verified exactly for an individual
galaxy, because of peculiar motions resulting from the fact that galaxies
have slightly different masses, and are not in a perfectly ordered phase like
a grid. But the Hubble law should be verified in average, provided that the
maximum scale of the data is not smaller than the scale of homogeneity.
The scattering of the data at a given scale reflects the level of inhomogene-
ity, and when using data on larger and larger scales, the scattering must be
less and less significant. This is exactly what is observed in practice. An
even better proof of the homogeneity of the universe on large scales comes
from the Cosmic Microwave Background, as we shall see in section 6.4.

We will come back to these issues in section 6.4, and show how the
formation of inhomogeneities on small scales are currently understood and
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Figure 1.4: An example of Hubble diagram published by the Hubble
Space Telescope Key Project in 2000 (Astrophys.J. 553 (2001) 47-72),
based on cepheids, supernovae and other standard candles till a distance
of 400 Mpc. The horizontal axis gives the radial velocity, expressed as
log10[v/c] = log10 z where z is redshift; the vertical axis shows the distance
log10[d/(1Mpc)].

quantified within some precise physical models.

1.3 The universe Expansion from Newtonian
Gravity

It is not enough to observe the galactic motions, one should also try to
explain it with the laws of physics.

1.3.1 Newtonian Gravity versus General Relativity

On cosmic scales, the only force expected to be relevant is gravity. The first
theory of gravitation, derived by Newton, was embedded later by Einstein
into a more general theory: General Relativity (thereafter denoted GR).
However, in simple words, GR is relevant only for describing gravitational
forces between bodies which have relative motions comparable to the speed
of light1. In most other cases, Newton’s gravity gives a sufficiently accurate
description.

The speed of neighboring galaxies is always much smaller than the speed
of light. So, a priori, Newtonian gravity should be able to explain the
Hubble flow. One could even think that historically, Newton’s law led to the
prediction of the universe expansion, or at least, to its first interpretation.
Amazingly, and for reasons which are more mathematical than physical,

1Going a little bit more into details, it is also relevant when an object is so heavy and
so close that the speed of liberation from this object is comparable to the speed of light.
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smoothing
radius

Figure 1.5: We build an inhomogeneous distribution of objects in the fol-
lowing way: starting from each intersection of the grid, we draw a random
vector and put an object of random mass at the extremity of the vector.
Provided that all random vectors and masses obey to the same distributions
of probability, the mass density is still homogeneous when it is smoothed
over a large enough smoothing radius (in our example, the typical length
of the vectors is smaller than the step of the grid; but our conclusion would
still apply if the vectors were larger than the grid step, provided that the
smoothing radius is even larger). This illustrates the concept of homogene-
ity above a given scale, like in the universe.

it happened not to be the case: the first attempts to describe the global
dynamics of the universe came with GR, in the 1910’s. In this course, for
pedagogical purposes, we will not follow the historical order, and start with
the Newtonian approach.

Newton himself did the first step in the argumentation. He noticed that
if the universe was of finite size, and governed by the law of gravity, then
all massive bodies would unavoidably concentrate into a single point, just
because of gravitational attraction. If instead it was infinite, and with an
approximately homogeneous distribution at initial time, it could concen-
trate into several points, like planets and stars, because there would be no
center to fall in. In that case, the motion of each massive body would be
driven by the sum of an infinite number of gravitational forces. Since the
mathematics of that time didn’t allow to deal with this situation, Newton
didn’t proceed with his argument.

1.3.2 The rate of expansion from Gauss theorem

In fact, using Gauss theorem, this problem turns out to be quite simple.
Suppose that the universe consists in many massive bodies distributed in
an isotropic and homogeneous way (i.e., for any observer, the distribution
looks the same in all directions). This should be a good modelling of the
universe on sufficiently large scales. We wish to compute the motion of a
particle located at a distance r(t) away from us. Because the universe is
assumed to be isotropic, the problem is spherically symmetric, and we can
employ Gauss theorem on the sphere centered on us and attached to the
particle (see figure 1.6). The acceleration of any particle on the surface of
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O

r

Figure 1.6: Gauss theorem applied to the local universe.

this sphere reads

r̈(t) = −GM(r(t))

r2(t)
(1.7)

where G is Newton’s constant and M(r(t)) is the mass contained inside the
sphere of radius r(t). In other words, the particle feels the same force as if
it had a two-body interaction with the mass of the sphere concentrated at
the center. Note that r(t) varies with time, but M(r(t)) remains constant:
because of spherical symmetry, no particle can enter or leave the sphere,
which contains always the same mass.

Since Gauss theorem allows us to make completely abstraction of the
mass outside the sphere2, we can make an analogy with the motion e.g.
of a satellite ejected vertically from the Earth. We know that this motion
depends on the initial velocity, compared with the speed of liberation from
the Earth: if the initial speed is large enough, the satellites goes away indef-
initely, otherwise it stops and falls down. We can see this mathematically
by multiplying equation (1.7) by ṙ, and integrating it over time:

ṙ2(t)

2
=
GM(r(t))

r(t)
− k

2
(1.8)

where k is a constant of integration. We can replace the mass M(r(t))
by the volume of the sphere multiplied by the homogeneous mass density

2The argumentation that we present here is useful for guiding our intuition, but we
should say that it is not fully self-consistent. Usually, when we have to deal with a
spherically symmetric mass distribution, we apply Gauss theorem inside a sphere, and
forget completely about the external mass. This is actually not correct when the mass
distribution spreads out to infinity. Indeed, in our example, Newtonian gravity implies
that a point inside the sphere would feel all the forces from all bodies inside and outside
the sphere, which would exactly cancel out. Nevertheless, the present calculation based
on Gauss theorem does lead to a correct prediction for the expansion of the universe.
In fact, this can be rigorously justified only a posteriori, after a full general relativistic
study. In GR, the Gauss theorem can be generalized thanks to the consequences of
Birkhoff’s theorem, which is valid also when the mass distribution spreads to infinity. In
particular, for an infinite spherically symmetric matter distribution, Birkhoff’s theorem
implies that we can isolate a sphere as if there was nothing outside of it. Once this
formal step has been performed, nothing prevents us from using Newtonian gravity and
Gauss theorem inside a smaller sphere, as if the external matter distribution was finite.
This argument justifies rigorously the calculation of this section.
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Figure 1.7: The motion of expansion in a Newtonian universe is equivalent
to that of a body ejected from Earth. It depends on the initial rate of
expansion compared with a critical density. When the parameter k is zero
or negative, the expansion lasts forever, otherwise the universe re-collapses
(r → 0).

ρmass(t), and rearrange the equation as

(

ṙ(t)

r(t)

)2

=
8πG
3
ρmass(t)−

k

r2(t)
. (1.9)

The quantity ṙ/r is called the rate of expansion. Since M(r(t)) is time-
independent, the mass density evolves as ρmass(t) ∝ r−3(t) (i.e., matter is
simply diluted when the universe expands). The behavior of r(t) depends
on the sign of k. If k is positive, r(t) can grow at early times but it always
decreases at late times, like the altitude of the satellite falling back on Earth:
this would correspond to a universe expanding first, and then collapsing. If
k is zero or negative, the expansion lasts forever.

In the case of the satellite, the critical value, which is the speed of
liberation (at a given altitude), depends on the mass of the Earth. By
analogy, in the case of the universe, the important quantity that should be
compared with some critical value is the homogeneous mass density. If at
all times ρmass(t) is bigger than the critical value

ρmass(t) =
3(ṙ(t)/r(t))2

8πG (1.10)

then k is positive and the universe will re-collapse. Physically, it means
that the gravitational force wins against inertial effects. In the other case,
the universe expands forever, because the density is too small with respect
to the expansion velocity, and gravitation never takes over inertia. The case
k = 0 corresponds to a kind of equilibrium between gravitation and inertia
in which the universe expands forever, following a power–law: r(t) ∝ t2/3.

1.3.3 The limitations of Newtonian predictions

In the previous calculation, we cheated a little bit: we assumed that the
universe was isotropic around us, but we didn’t check that it was isotropic
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everywhere (and therefore homogeneous). Following what we said before,
homogeneous expansion requires proportionality between speed and dis-
tance at a given time. Looking at equation (1.9), we see immediately that
this is true only when k = 0. So, it seems that the other solutions are not
compatible with the Cosmological Principle. We can also say that if the
universe was fully understandable in terms of Newtonian mechanics, then
the observation of linear expansion would imply that k equals zero and that
there is a precise relation between the density and the expansion rate at
any time.

This argument shouldn’t be taken seriously, because the link that we
made between homogeneity and linear expansion was based on the additiv-
ity of speed (look for instance at the caption of figure 1.2), and therefore,
on Newtonian mechanics. But Newtonian mechanics cannot be applied at
large distances, where v becomes large and comparable to the speed of light.
This occurs around a characteristic scale called the Hubble radius RH :

RH = cH−1, (1.11)

at which the Newtonian expansion law gives v = HRH = c.
So, the full problem has to be formulated in relativistic terms. In the

GR results, we will see again some solutions with k 6= 0, but they will
remain compatible with the homogeneity of the universe.



Chapter 2

Homogeneous Cosmology

From now on, we will adopt units in which c = h̄ = kb = 1 in most
equations.

2.1 The Lemâıtre, Friedmann, Robertson &

Walker metric

2.1.1 Cosmological background and perturbations

As already suggested in section 1.2.2, most calculations and predictions
in cosmology are done under the assumption that the exact description of
the universe can be decomposed in two problems: the background problem
(which should be an independent, self-consistent problem) and the inhomo-
geneity problem (within a given imposed background). This is the usual
approach in any theory of perturbations.

In the background problem, one assumes that in first approximation we
can see the universe as a smooth distribution of matter, i.e. that one can
average over small inhomogeneities like stars, galaxies and clusters, which
are replaced by an idealized “cosmological fluid”. The cosmological fluid
can be thought to be a truly continuous distribution of matter, or equiv-
alently, a regular distribution of compact objects, smoothed over a bigger
scale than the smallest distance between these objects. The background
problem consists in computing the evolution of the cosmological fluid (i.e.,
the distortions due to its own gravitational field, its possible transforma-
tions under phase transitions, etc.). The goal is to understand e.g. the
average expansion rate as a function of time, the age of the universe, etc.

The perturbation problem consists in writing first-order (linear) per-
turbations in a given background and solve for their evolution. The goal
is to understand, for instance, the large-scale structure of the universe or
the Cosmic Microwave Background (CMB) anisotropies. The approach can
even be pushed to second-order (quadratic) perturbations, but then equa-
tions become extremely complicated.

Of course, this approach cannot work for describing the formation of
small scale structures. For instance, the merging of two galaxies is a fully
non-linear gravitational problem which cannot be addressed by a perturbed
expansion. On the other hand, it is not necessarily sensitive to General Rel-
ativity and to the expansion of the universe. The interesting question is to
understand whether the cosmological perturbation theory is self-consistent
on the largest scales today, and possibly on all scales in the remote past.

13



14 CHAPTER 2. HOMOGENEOUS COSMOLOGY

Today, all physicists agree that the cosmological perturbation theory
provides an excellent description of the universe at early times on all scales
(we will quantify the statement “early time” later in the course), which
can accurately explain e.g. observations of the CMB or of light element
abundances. In addition, a large majority of cosmologists believes that
cosmological perturbation theory is able to explain the structure and evo-
lution of the universe on the largest observables scales until today. On small
scales, the relativistic cosmological perturbation theory should be substi-
tuted by a Newtonian non-linear approach (involving N-body gravitational
clustering simulations)1.

2.1.2 General Relativity in two words

Since in this Master, General Relativity is being taught in parallel to cos-
mology, we will assume in this subsection that the reader is a complete
newcomer in the field, and provide some very basic intuition on General
Relativity. Then, in the following sections, we will derive step by step the
general relativistic laws governing the evolution universe, and stress the
differences with their Newtonian counterparts.

When Einstein tried to build a theory of gravitation compatible with
the invariance of the speed of light, the equivalence principle and Newton’s
law in some particular limit, he found that the minimal price to pay was :

• to abandon the idea of a gravitational potential, related to the distri-
bution of matter, and whose gradient gives the gravitational field in
any point.

• to assume that our four-dimensional space-time is curved, and that
free-falling objects describe geodesics in this space-time.

• to relate the properties of curvature in a given point to the properties
of matter in the same point.

What does that mean in simple words?
First, let’s recall briefly what a curved space is, first with only two-

dimensional surfaces. Consider a plane, a sphere and an hyperboloid. For
us, it’s obvious that the sphere and the hyperboloid are curved, because we
can visualize them in our three-dimensional space: so, we have an intuitive
notion of what is flat and what is curved. But if there were some two-
dimensional people living on these surfaces, not being aware of the existence
of a third dimension, how could they know whether they leave in a flat or a
in curved space-time? There are several ways in which they could measure
it. One would be to obey the following prescription: walk in straight line
on a distance d; turn 90 degrees left; repeat this sequence three times again;
see whether you are back at your initial position. The people on the three
surfaces would find that they are back there as long as they walk along a
small square, smaller than the radius of curvature. But a good test is to
repeat the operation on larger and larger distances. When the size of the

1However, it is worth pointing out that a minority of researchers (e.g. Thomas
Buchert) would say that at least one problem cannot be understood within the framework
of cosmological perturbations in the recent universe and on the largest scales: namely,
the current acceleration of the universe expansion. In few words, the validity of a pertur-
bation theory is difficult to prove when the equation of motions are non-linear (which is
the case of the Einstein equation involved in cosmology, see the next sections). Starting
from this point, it is possible to argue that perturbation theory could require some kind
of non-trivial renormalization of the background in the recent universe, when small-scale
structures are very non-linear.
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Figure 2.1: Measuring the curvature of some two-dimensional spaces. By
walking four times in straight line along a distance d, and turning 90 degrees
left between each walk, a small man on the plane would find that he is back
at his initial point. Doing the same thing, a man on the sphere would walk
across his own trajectory and stop away from his departure point. Instead,
a man on the hyperboloid would not close his trajectory.

square will be of the same order of magnitude as the radius of curvature, the
habitant of the sphere will notice that before stopping, he crosses the first
branch of his trajectory (see figure 2.1). The one on the hyperboloid will
stop without closing his trajectory. Another way to specify the curvature of
a two-dimensional surface is to map it with an arbitrary coordinate system
(x, y), and to use a scaling law or line element, i.e. a function dl(x, y, dx, dy)
providing a measure of infinitesimal distances as a function of position and
of infinitesimal coordinate differences. For example, on projected maps of
the earth’s surface, one should know the scaling law in order to correctly
estimate distances between two points of given latitude and longitude. At
the next level of precision, the surface of the earth is curved by mountains
and valleys. In a given region, having under disposal a precise topological
map with contour lines of constant elevation, one can use a scaling law
for estimating the physical distance between two neighboring points as a
function of their latitude and longitude difference, and of the number of
contour lines between the two points.

Getting an intuitive representation of a three-dimensional curved space
is much more difficult. A 3-sphere and a 3-hyperboloid could be defined
analytically as some 3-dimensional spaces obeying to the equation a2 +
b2 + c2 ± d2 = R2 inside a 4-dimensional Euclidean or Minkowski space
with coordinates (a, b, c, d). If we wanted to define them by making use
of only three dimensions, the problem would be exactly like for drawing a
projected map of the Earth. We would need to specify the line element
dl(x, y, z, dx, dy, dz) everywhere, within a given (arbitrary) coordinate sys-
tem. Of course, the coordinates can be defined arbitrarily, but the physical
distances computed from dl are related to intrinsic properties of the curved
space, invariant under a change of coordinate. The scaling law leads to the
definition of a spatial metric tensor defined through dl2 = gij(x

i) dxidyj ,
and to the whole formalism of Riemannian geometry (curvature tensor,
intrinsic curvature scalar, geodesics, etc.).

That was still for three dimensions. The curvature of a four-dimensional
space-time is very difficult to visualize intuitively, first because it has even
more dimensions, and second because in special and general relativity, there
is a difference between time and space. For a given space-time manifold,
one can choose an arbitrary system of coordinates (time x0 and space
x1, x2, x3) and describe the space-time curvature by the line element
ds (which represents the infinitesimal distance betwen two closeby events
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Figure 2.2: Gravitational lensing. Somewhere between an object C and an
observerA, a massive object B - for instance, a galaxy - curves its surround-
ing space-time. Here, for simplicity, we only draw two spatial dimensions.
In absence of gravity and curvature, the only possible trajectory of light
between C and A would be a straight line. But because of curvature, the
straight line is not anymore the shortest trajectory. Photons prefer to fol-
low two geodesics, symmetrical around B. So, the observer will not see one
image of C, but two distinct images. In fact, if we restore the third spatial
dimension, and if the three points are perfectly aligned, the image of C will
appear as a ring around B. This phenomenon is observed in practice.

rather than two closeby spatial points). The 4×4 metric defined through
ds2 = gµν(x

µ) dxµdyν must have a negative signature (i.e. negative deter-
minant) in order to recover locally Lorentz invariance and special relativity.

Now, the definition of geodesics is the following. Take an initial point
and an initial direction. They define a unique line, called a geodesic, such
that any portion of the line gives the shortest trajectory between the two
points (so, for instance, on a sphere of radius R, the geodesics are all the
great circles of radius R, and nothing else). In general relativity (as in any
theory of gravity respecting the equivalence principle and hence based on
geometry and a metric tensor), the trajectories xµ(λ) of free-falling bodies
are geodesics of the space-time specified by the metric gµν . The geodesics
obey to

d2xα

dλ2
+ Γα

µν

dxµ

dλ

dxν

dλ
= 0 (2.1)

and depend on curvature through the Christoffel symbols Γα
µν , which in

turn can be expressed as a function of the metric as

Γα
µν =

1

2
gαβ(gµβ,ν + gβν,µ − gµν,β) . (2.2)

Note that the expression of gµν and Γα
µν are not invariant under a change

of coordinate, while the curvature of the underlying manifold and the en-
semble of geodesics on this manifold are intrinsic, coordinate-independent
properties of the manifold.

All free-falling bodies follow geodesics, including light rays. This leads
for instance to the phenomenon of gravitational lensing (see figure 2.2).

The Einstein theory of gravitation says that four-dimensional space-time
is curved, and that the properties of curvature in each point (related to the
metric and its derivatives) depends entirely on the matter distribution in
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that point. In simple words, this means that the metric tensor plays more
or less the same role as the gravitational potential in Newtonian gravity.

So, in General Relativity, gravitation is not formulated as a force or a
field, but as the curvature of space-time, sourced by matter. All isolated
systems follow geodesics which are bent by the curvature. In this way, their
trajectories are affected by the distribution of matter around them: this is
precisely what gravitation means.

2.1.3 Frame comoving with an observer

Let us consider a free-falling observer M in an arbitrary curved space-
time. The observer’s trajectory (which is a geodesic) can be described
parametrically by a set of functions {x1(t), x2(t), x3(t)}.

We can always perform a change of coordinates in such way that this
particular observer has fixed spatial coordinates xiM : along this geodesic
and in the new coordinates, dxi/dx0 = 0 and xi = xiM . This frame is said
to be comoving with the observer, and locally all terms g0i vanish: in each
point xµ = (t, x1M , x2M , x

3
M ) one has g0i(x

µ) = 0.
In addition, it is possible to define the time coordinate in such way

that the coefficient g
1/2
00 (called the lapse function) is constant all over the

geodesic of our particular observer, and equal to the speed of light c. If this
is the case, the line element between two closeby events on the observer’s
trajectory is given by ds2 = c2(dx0)2+gijdx

idxj = c2(dx0)2 (since dxi = 0).
Hence, dx0 = ds/c: the time coordinate x0 ≡ t obeys to the definition of
proper time. It represents the physical time measured by our free-falling
observer.

2.1.4 Building the first cosmological models

After obtaining the mathematical formulation of General Relativity around
1916, Einstein considered various testable consequences of his theory in the
solar system (e.g., corrections to the trajectory of Mercury, or to the appar-
ent diameter of the sun during an eclipse). But remarkably, he immediately
understood that GR could also be applied to the universe as a whole, and
published some first attempts in 1917. However, Hubble’s results concern-
ing the expansion were not known at that time, and most physicists had
the prejudice that the background universe should be not only isotropic and
homogeneous, but also static – or stationary. As a consequence, Einstein
(and other people like De Sitter) found some interesting static cosmological
solutions, but not the ones that really describe our universe.

A few years later, some other physicists tried to relax the assumption of
stationarity. The first was the Russian physicist Alexander Friedmann (in
1922), followed independently by the Belgian physicist and priest Lemâıtre
(in 1927), and then by some Americans, Robertson and Walker. When the
Hubble flow was discovered in 1929, it became clear for a fraction of the
scientific community that the universe could be described by the equations
of Friedmann, Lemâıtre, Robertson and Walker. However, many people –
including Hubble and Einstein themselves – remained reluctant to this idea
for many years. Today, the Friedmann – Lemâıtre model is considered as
one of the major achievements of modern physics.

2.1.5 Coordinate choice in the FLRW universe

The LFRW model is the most general solution of the GR equations under
the assumption that the background universe is homogeneous and isotropic.



18 CHAPTER 2. HOMOGENEOUS COSMOLOGY

The fact that the universe is postulated to be homogeneous and isotropic
(but not necessarily static) means that there exist a definition of time such
that at each instant, all points and all directions are equivalent. For in-
stance, the energy density should only be a function of this time, not of
space: ρ(xµ) = ρ(x0).

We immediately notice that the fact of being “homogeneous, isotropic
and non-stationary” cannot be a coordinate-independent property of a
given universe, by construction: it privileges a particular definition of time,
or more precisely, a particular time-slicing. A redefinition of time t −→ t′(t)
does not change the time-slicing. In the new time coordinate, at a given
time t′, all spatial points are still equivalent. A more general redefinition of
time mixing time and space, t −→ t′(t, x1, x2, x3), changes the time-slicing:
3D hypersurfaces of constant t′ are no longer homogeneous.

The easiest way to build a system of coordinates in a homogeneous
universe is to start from an initial homogeneous hypersurface, to assign it
a time coordinate t1 and some arbitrary spatial coordinates. In each point,
we can place an observer a rest with respect to the coordinate system: for
any of these observers, dxi/dx0(t1) = 0. This is possible by assumption:
since the hypersurface is assumed to be homogeneous, there is no “force”
imposing some “bulk motion” to all observers. We then give a clock to
each of our observers. These clocks indicate the proper time measured by
each of them. We define a new hypersurface as the ensemble of all points
in space-time such that the clocks indicate a common value t2. We assign
to this hypersurface the time coordinate t2, and some spatial coordinates
such that each of our observers keeps fixed spatial coordinates. This can
be repeated in order to map the entire space-time with a set of coordinates
such that: all our observers keep fixed spatial coordinates; and the time
coordinate corresponds to the proper time measured by all observers. In
other words, we have built a frame which is comoving not just with one
observer (as in a previous subsection), but with an infinity of observers
mapping the entire space. These particular observers are called “comoving
observers”, and any set of coordinates built in that way is called a comoving
coordinate system.

In comoving coordinates and using proper time, the metric describing
the whole space-time reads

ds2 = c2dt2 + gijdx
idxj (2.3)

in which t is the proper time, (xi) are some spatial comoving coordinates,
and gij must have a special form preserving the homogeneity and isotropy
of three-dimensional space at any given time t. We will write down this
form of gij in the next subsection. One is still free to perform some change
of coordinates, and it is worth noticing that:

• a simple redefinition of time t −→ t′(t) preserves the above form of
the metric, excepted that g00 6= c2. The new time coordinate does not
represent the proper time of comoving observers anymore, but it still
defines a time-slicing of space-time in homogeneous hypersurfaces.
In the following, we will sometimes use different definitions of the
time coordinate. Physical problems can be solved with any of these
time coordinates, although observables involving physical periods of
time or rates should always be computed with the proper time of the
observer making the experiment.

• an internal redefinition of spatial coordinates xi −→ xi
′
(xi) preserves

the above form, and the universe will still appear as homogeneous
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in the new system. Hence, there is an infinite number of possible
comoving spatial coordinate systems. In the following we will use
cartesian coordinates, spherical coordinates, etc.

• a general change of coordinates mixing space and time would not pre-
serve the above form of the metric. In the new coordinate system,
the universe would not appear as homogeneous, since quantities like
e.g. the spatial curvature or the total energy density would depend
on both time and space. The new frame could represent locally the
comoving frame of an observer leaving in a homogeneous universe,
but not being at rest with the ensemble of comoving observers (who
see homogeneous and isotropic observables). Such an observer with
a peculiar velocity should not perceive the universe as isotropic: for
instance, if the universe is filled with a homogeneous background of
light, a non-comoving observer should see a Doppler effect affecting
the color of this light (bluer in front of him, redder behind). It is im-
portant to understand that the FLRW assumption does not say that
all possible observers see a homogeneous universe (this would only be
possible within a homogeneous static universe), but simply that there
exists an ensemble of observers seeing a homogeneous universe, and
hence, a global “comoving frame”.

2.1.6 The curvature of the FLRW universe

So far, we have not specified the part gij . We only assumed that it preserves
homogeneity and isotropy. So, the curvature should be the same everywhere
at a given time. The list of possible three-dimensional spaces with constant
curvature is very short: flat Euclidean space, 3-sphere and 3-hyperboloid.

In flat space, one can use e.g. Cartesian or polar coordinates and write
the spatial line element as

dl2 = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2θ dφ2) . (2.4)

All possible changes of coordinate preserve this flatness. Let us rewrite
the line element after the simplest possible change, namely an homothetic
transformation with respect to the origin of coordinates:

dl2 = a2(dx2 + dy2 + dz2) = a2[dr2 + r2(dθ2 + sin2θ dφ2)] . (2.5)

Let’s go back now to the full FLRW space-time. It is obvious that

ds2 = c2dt2 − a2(dx2 + dy2 + dz2) = c2dt2 − a2[dr2 + r2(dθ2 + sin2θ dφ2)]
(2.6)

describes a flat, isotropic universe, but this universe is static. In fact we
only want the universe to be homogeneous/isotropic at any given time, so

ds2 = c2dt2−a(t)2(dx2+dy2+dz2) = c2dt2−a(t)2[dr2+r2(dθ2+sin2θ dφ2)]
(2.7)

(where we made the a factor time-dependent) is another obvious solution to
the FLRW problem leading to a homogeneous, non-stationary and spatially
flat universe. This is even the most general FLRW solution with zero spatial
curvature (as usual, modulo trivial time redefinitions and spatial changes
of coordinates)2.

2Above, we performed a homothetic transformation of coordinates and allowed the
factor appearing in the transformation to become a time-dependent function. We could
have made a different transformation, generating other factors, and tried to make these
other factors time-dependent. But in general this would break homogeneity and isotropy,
unless the time-dependent factor can be factored out like in the above solution!
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Again, three-dimensional spaces with constant non-zero curvature fall
in two categories: 3-spheres and 3-hyperboloids. A convenient choice of
polar coordinate leads to the following expression for the line elements in
such spaces:

dl2 =

[

dr2

1− kr2 + r2(dθ2 + sin2θ dφ2)

]

(2.8)

where k is a constant number, related to the spatial curvature: if k =
0, the universe is Euclidean (and called a “flat universe”), if k > 0, it
is positively curved (and called a “closed universe”), and if k < 0, it is
negatively curved (and called an “open universe”). In the last two cases,
the radius of curvature is given by

rc(t) =
1

√

|k|
. (2.9)

When k > 0, the universe has a finite volume, and the coordinate r is
defined only in the range 0 ≤ r < rc. This is the reason for which positively
curved universes are usually called “closed”. The terms “open universe”
just refer to the opposite case.

The most general solution for an homogeneous, isotropic, non-stationary
universe is obtained again by multiplying the above spatial line element by
the square of a time-dependent factor a(t) called the scale factor:

ds2 = c2dt2 − a(t)2
[

dr2

1− kr2 + r2(dθ2 + sin2θ dφ2)

]

. (2.10)

The corresponding metric is called the FLRW metric (in comoving spher-
ical coordinates). So, in three-dimensional space, infinitesimal physical
distances dl are always given by the scale factor a(t) times the comoving
line element computed from Eq. (2.8). This is still true for a macroscopic
length obtained by integrating dl over a given path in three-dimensional
space: in the FRLW universe, the physical size of an object at a given time
is always equal to its comoving size multiplied by the scale factor at that
time3. In particular we can immediately notice that the physical size of the
radius of curvature in the FLRW universe is

Rphysical
c (t) =

a(t)
√

|k|
. (2.11)

The previous expression in Eq. (2.9) provides only the comoving radius of
curvature. Note that r and a(t) can always be rescaled by r −→ r

√

|k|,
a(t) −→ a(t)/

√

|k|. After the rescaling, the metric reads like in Eq. (2.10),
but with k restricted to the three possible values +1 (positive curvature),
0 (flat) or -1 (negative curvature) without loss of generality.

We know that observers at rest with the cosmological fluid have fixed co-
moving coordinates (it is trivial to check that all trajectories parametrized
by (xi = xiM=constant) are a solutions of the geodesics equations in the
FLRW metric). This doesn’t mean that the universe is static, because all
distances grow proportionally to a(t): so, the scale factor accounts for the
homogeneous expansion. An analogy helps in understanding this concept.
Let us take a rubber balloon and draw some points on the surface. Then,
we inflate the balloon. The distances between all the points grow propor-
tionally to the radius of the balloon. This is not because the points have

3We will see however in the next sections that due to the finite speed of light, speaking
of macroscopic distance in cosmology can be somewhat subtle and require more work
and definitions.
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a proper motion on the surface, but because all the lengths on the surface
of the balloon increase with time. In other words, in general relativity, the
universe expansion is not described anymore through the velocity of objects
like in Newtonian cosmology, but through the expansion of the background
spacetime.

Intuitively, the FLRW metric describes a curved space-time with two
types of curvature:

• the spatial curvature, described by ±a(t)/
√

|k| at each time.

• the space-time curvature described by the time evolution of a(t).

The second is maybe more difficult to visualize as a curvature term, but
we will see later that both terms contribute e.g. to the curvature of light
ray trajectories in space-time. In a few sections, we will also see that
the scale factor defines an actual radius of curvature, the Hubble radius
RH(t) = ca(t)/ȧ(t).

If k was equal to zero and a was constant in time, we could redefine the
coordinate system with (r′, θ′, φ′) = (ar, θ, φ), obtain the Minkowski metric
and go back to Newtonian gravity. So, we stress again that the curvature
really manifests itself as k 6= 0 (for spatial curvature) and ȧ 6= 0 (for the
remaining space-time curvature).

Note finally that in the rest of the course, some equations may take a
simpler form after the time redefinition dt = a(t)dτ . In this case, the time
dependence factors out from the full FLRW line element:

ds2 = a2(τ)

(

c2dτ2 −
[

dr2

1− kr2 + r2(dθ2 + sin2θ dφ2)

])

(2.12)

where the scalar factor a(t) as been re-expressed as a function of the new
time variable τ . This metric exhibits conformal symmetry; hence, τ is called
conformal time, by opposition to the proper time t, also called cosmological
time.

2.2 Curvature of light-rays in the FLRW uni-
verse

Our goal in this section is to understand the concrete consequences of the
universe expansion for observers looking at the sky. Hence, we need to
understand how light rays propagate in the universe.

2.2.1 Photon geodesics

Photon propagate in the vacuum at the speed of light along geodesics.
Hence, over an infinitesimal time interval time dt, they run over a distance
dl2 = c2dt2. On macroscopic scales, the relation between distance and time
is given by integrating dl = ±cdt over the geodesic.

By definition, we are only interested in photons reaching us at some
point, and allowing us to observe an object. Lets us consider that we are a
comoving observer and choose the origin of spherical comoving coordinates
to coincide with us (this choice is only made for getting simple calculations;
it doesn’t imply at all that we occupy some privileged point in space or
anything like that). In the FLRW universe, a photon reaching us with
a momentum aligned with a given direction (θe, φe) must have travelled
along a straight line in space, starting from an unknown emission point
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(re, θe, φe). If its spatial trajectory was not a straight line, there would be
a contradiction with the assumption of an isotropic universe. However the
photon trajectory in space-time is curved, as can be checked by integrating
over the infinitesimal distance between the emission point (te, re, θe, φe) and
a later point (t, r, θe, φe) with t > te, r < re:

∫ r

re

− dr√
1− kr2

=

∫ t

te

c dt

a(t)
(2.13)

On can check that this trajectory is indeed a solution of the geodesic equa-
tion, and that it corresponds to a curved trajectory in space-time: if we
draw this trajectory in two-dimensional (t, r) space, we see that the slope
dr/dt = −c

√
1− kr2/a(t) changes along the trajectory. The photon is seen

by the observer (at the origin of coordinates) at a reception time t0 which
can be deduced from re and te through the implicit relation:

∫ 0

re

− dr√
1− kr2

=

∫ t0

te

c dt

a(t)
. (2.14)

The ensemble of all points (te, re, θ, φ) for which eq. (2.14) holds define our
past light-cone at time t0, as illustrated in figure 2.3. Note that the right-
hand side corresponds exactly to the conformal time interval (τr−τe) times
the speed of light.

The equation (2.13) describing the propagation of light (more precisely,
of radial incoming photons) is extremely useful - probably, one of the two
most useful equations of cosmology, together with the Friedmann equation,
that we will present soon. It is on the basis of this equation that we are able
today to measure the curvature of the universe, its age, its acceleration, and
other fundamental quantities.

2.2.2 A new definition of redshift

First, a simple calculation based on equation (2.13) gives the redshift asso-
ciated with a given source of light. Let’s still play the role of a comoving
observer sitting at the origin of coordinates. We observe a galaxy located
at (re, θe, φe), emitting light at a given frequency λe. The corresponding
wave crests are emitted by the galaxy at a frequency νe = c/λe with a
period dte ≡ 1/νe. Each wave crests follows the trajectory described by
Eq. (2.13). We receive the light signal with a frequency νr = c/λr = 1/dtr
such that

∫ 0

re

− dr√
1− kr2

=

∫ tr

te

dt

a(t)
=

∫ tr+dtr

te+dte

dt

a(t)
. (2.15)

The second equality gives:

∫ te+dte

te

dt

a(t)
=

∫ tr+dtr

tr

dt

a(t)
. (2.16)

Hence in very good approximation:

dte
a(te)

=
dtr
a(tr)

. (2.17)

We infer a simple relation between the emission and reception wavelengths:

λr
λe

=
dtr
dte

=
a(tr)

a(te)
. (2.18)
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Figure 2.3: An illustration of the propagation of photons in our universe,
skipping one spatial dimension. We are sitting at the origin, and at a time
t0 we can see the light of a galaxy emitted at (te, re, θe). Before reaching
us, this light has travelled over a trajectory which is straight in three-
dimensional space (constant angles), but curved in space-time. In any point,
the slope dr/dt is given by equation (2.13). So, the relation between re, t0
and te depends on the spatial curvature and on the scale factor evolution.
The trajectory would be a straight line in space-time only if k = 0 and
a = constant, i.e., in the limit of Newtonian mechanics in Euclidean space.
The ensemble of all possible photon trajectories crossing r = 0 at t = t0 is
called our “past light cone”, visible here in orange. Asymptotically, near the
origin, it can be approximated by a linear cone with dl = cdt, showing that
at small distance, the physics is approximately Newtonian. Important
remark: here, the past line cone has be drawn as a convex cone.
Instead, for realistic cosmological scenarios, the cone is concave.

This result could have been easily guessed: a wavelength is a distance,
subject to the same stretching as all physical distances when the scale
factor increases. Hence, in the FLRW universe, the redshift imposed by
the expansion is given by

z =
∆λ

λ
=
λr − λe
λe

=
a(tr)

a(te)
− 1 . (2.19)

In other words, if we observe an object now, at time t0, its absorption lines
are redshifted by a factor

z =
a(t0)

a(te)
− 1 . (2.20)
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This is a crucial difference with respect to Newtonian mechanics, in
which the redshift was defined as z = v/c, and seemed to be limited to
|z| < 1. The true GR expression doesn’t have such limitations, since the
ratio of the scale factors can be arbitrarily large without violating any
fundamental principle. And indeed, observations do show many objects -
like quasars - at redshifts of z ∼ 4 or even bigger. We’ll see later that we also
observe the Cosmic Microwave Background at a redshift of approximately
z = 1100!

Note finally that in the real perturbed universe, objects are never ex-
actly comoving, they have small peculiar velocities ~vc with respect to the
comoving frame. Hence, the observed redshift is given by the sum of a
General Relativity contribution given by eq. (2.20), and a Doppler contri-
bution given by (~vc.n̂)/c. The second term rarely exceeds O(10−3), while
the first term grows from zero for nearby objects to infinity for remote
objects. Hence, we expect that at very short distances, the Doppler contri-
bution can dominate, while at larger distances the GR contribution takes
over.

2.2.3 A new definition of the Hubble parameter

In the limit of small redshift, we expect to recover the Newtonian results,
and to find a relation similar to z = v/c = HL/c (where L is the physical
distance to the object). To show this, let’s assume again that t0 is the
present time, and that we are a comoving observer at r = 0. We want to
compute the redshift of a nearby galaxy, which emitted the light that we
receive today at a time t0 − dt. In the limit of small dt, the equation of
propagation of light shows that the physical distance L between the galaxy
and us is simply

L ≃ dl = c dt (2.21)

while the redshift of the galaxy is

z =
a(t0)

a(t0 − dt)
− 1 ≃ a(t0)

a(t0)− ȧ(t0)dt
− 1 =

1

1− ȧ(t0)
a(t0)

dt
− 1 ≃ ȧ(t0)

a(t0)
dt .

(2.22)
By combining these two relations we obtain

z ≃ ȧ(t0)

a(t0)
L/c . (2.23)

So, at small redshift, we recover the Hubble law, and the role of the Hubble
parameter is played by ȧ(t0)/a(t0). In the Friedmann universe, we will
define the Hubble parameter at any time as the expansion rate of the scale
factor:

H(t) =
ȧ(t)

a(t)
. (2.24)

The current value of the Hubble parameter (the one measured by Hubble
himself) will be noted as H0.

We have proved that in the FLRW universe, the proportionality be-
tween distance and velocity (or redshift) is recovered for small distances
and redshifts. What happens at larger distance? This question actually
raises a non-trivial problem: the definition of distances for objects which
are so far from us that the (Euclidean) approximation L = dl = dt becomes
inaccurate.
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2.2.4 The notion of distance to an object

Let us assume again that sitting at the origin of spherical coordinates at
time t0, we observe a remote comoving object emitting light from (te, re, θe, φe).
What is the physical distance to the object? This question is ambiguous in
an expanding universe. Are we asking about the distance in units of today,
i.e. the distance between us and the position of this object today? If it is
a comoving object, it should be located now at coordinates (t0, re, θe, φe).
Then, the distance computed on the constant-time hypersurface with t = t0
is given by

d =

∫ re

0

dl = a(t0)

∫ re

0

dr√
1− kr2

. (2.25)

Very often, the scale factor is defined in such way that a(t0) = 1, and the
above distance d coincides with the comoving distance χ(re):

χ(re) ≡
∫ re

0

dr√
1− kr2

, (2.26)

which can be integrated to

χ(r) =







sin−1(r) if k = 1,
r if k = 0,

sinh−1(r) if k = −1.
(2.27)

Hence, it is useful to define the function

fk(x) ≡







sin(x) if k = 1,
x if k = 0,
sinh(x) if k = −1,

(2.28)

so that r = fk(χ).
It follows from Eq. (2.14) that χ(r) is equal to the conformal age of the

object, (τ0 − τe), times the speed of light:

χ(r) =

∫ t0

te

c dt

a(t)
= c(τ0 − τe) . (2.29)

At this point, conformal time takes a particular signification: it is a partic-
ular measure of time, which is equal to the comoving distance traveled by
a light signal divided by c. In units in which c = 1 and assuming a(t0) = 1,
both χ and τ can be expressed in units of physical distances today, e.g.
in Mega-parsecs. These are indeed the most comon units for comoving
distance and conformal time.

Comoving distances are well-defined quantities, up to a choice of nor-
malization for a(t). They are used by observers in many circumstances. By
construction, the comoving distance between two comoving objects does
not depend on time, unlike the physical distance between them. However,
this is a purely conventional and rather artificial definition of distances,
since we can’t see remote objects today - they might even have disap-
peared. Anyway, we should not argue about the definition of distances,
because distances are not directly measurable quantities in cosmology. We
should concentrate on experimental, indirect ways to probe them. Each
experimental technique will lead to a particular definition of distance.

In astrophysics, distances are usually measured in three ways:

• From the redshift. In principle the observed redshift of objects mea-
sures the ratio a(t0)/a(te) plus corrections due to the local effects of
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small-scale inhomogeneities (peculiar velocity of the object, ...). On
very large distances, one can neglect the impact of inhomogeneities
and assume in first approximation that the observed redshift is really
equal to a(t0)/a(te) − 1. Then, if we know in advance the function
a(t), we can identify the time te and compute the comoving distance
χ(te) by integrating (c dt/a(t)) from te to t0. This method is (in first
approximation) the one used by observers trying to infer the spatial
distribution of galaxies from galaxy redshift surveys. The distance
reported in pictures showing the distribution of galaxies in slices of
our universe is obtained in that way. However, it assumes an a pri-
ori knowledge of the function a(t). In many cases, this function is
precisely what one wants to measure.

• From the angular diameter of standard rulers. Surprisingly, there
exist a few objects in astrophysics and cosmology which physical size
can be known in advance, given some physical properties of these
objects. They are called standard rulers. In the next chapters we
will introduce one example of standard ruler: the sound horizon at
decoupling, “observed” in CMB anisotropies. In Euclidean space,
the distance d to a spherical object can be inferred from its physical
diameter dl and its angular diameter dθ through dl = d×dθ. In FLRW
cosmology, although the geometry is not Euclidean, we will adopt
exactly this relation as one of the possible definitions of distance.
The corresponding quantity is called the angular diameter distance
dA,

dA ≡
dl

dθ
. (2.30)

In Euclidean space, dA would be proportional to the usual Euclidean
distance to the object and therefore to its redshift. In the FLRW
universe, the relation between the angular diameter distance and the
redshift is non-trivial and depends on the spacetime curvature, as we
shall see in the next subsection.

• From the luminosity of standard candles. As we have seen already
with Cepheids, there exists also objects called standard candles for
which the absolute luminosity (i.e. the total luminous flux emitted
per unit of time) can be estimated independently of its distance and
apparent luminosity. In Euclidean space, the distance could be in-
ferred from the absolute luminosity L and apparent one l through
l = L/(4πd2). In cosmology, although the geometry is not Euclidean,
we will adopt exactly this relation as one of the possible definitions
of distance. The corresponding quantity is called the luminosity dis-
tance dL,

dL ≡
√

L

4πl
. (2.31)

In Euclidean space, dL would be again proportional to the usual Eu-
clidean distance to the object and therefore to its redshift, while in
the FLRW universe the relation between the luminosity distance and
the redshift is as subtle as for the angular diameter distance.

2.2.5 Angular diameter distance – redshift relation

Recalling that in Euclidean space with Newtonian gravity and homogeneous
(linear) expansion, one has z = v/c and v = H0d, we easily find a trivial
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relation between the angular diameter distance and the redshift:

dA = d = (c/H0) z. (2.32)

In General Relativity, because of the bending of light-rays by gravity, the
steps of the calculation are different. Using the definition of infinitesimal
distances (2.10), we see that the physical size dl (evaluated at time te) of
an object orthogonal to the line of sight is related to its angular diameter
dθ through

dl = a(te) re dθ (2.33)

where te is the time at which the galaxy emitted the light ray that we
observe today on Earth, and re is the comoving coordinate of the object.
Hence

dA = a(te) re = a(t0)
re

1 + ze
. (2.34)

We can replace re using Eqs. (2.26) - (2.29):

dA =
a(t0)

1 + ze
fk(χ) (2.35)

=
a(t0)

1 + ze
fk

(∫ t0

te

c dt

a(t)

)

(2.36)

=
a(t0)

1 + ze
fk

(∫ a0

ae

c da

a2H(a)

)

(2.37)

=
a(t0)

1 + ze
fk

(∫ ze

0

c dz

a(t0)H(z)

)

(2.38)

If we know the the curvature sign k and the function H(z) up to ze, we can
compute dA as a function of ze. The function dA(ze) is called the “angular
diameter distance – redshift relation”.

A generic consequence is that in the Friedmann universe, for an object
of fixed size and redshift, the angular diameter depends on the spatial
curvature - as illustrated graphically in figure 2.4. Therefore, if we know
in advance the physical size of an object, we can measure on the one hand
its angular diameter, on the other hand its redshift ze, and then look for
cosmological models predicting the correct value for dA(ze).

2.2.6 Luminosity distance – redshift relation

In absence of expansion and curvature, dL would simply correspond to the
Euclidean distance to the source. On the other hand, in general relativity,
it is easy to understand that the apparent luminosity is given by

l =
L

4π a2(t0) r2e(1 + ze)2
(2.39)

leading to
dL = a(t0) re(1 + ze) . (2.40)

Let us explain this result. First, the reason for the presence of the fac-
tor [4π a2(t0) r

2
e ] in equation (2.39) is obvious. The photons emitted at a

comoving coordinate re are distributed today on a sphere of comoving ra-
dius re surrounding the source. Following the expression for infinitesimal
distances (2.10), the physical surface of this sphere is obtained by integrat-
ing over the infinitesimal surface element dS2 = a2(t0) r

2
e sinθ dθ dφ, which

gives precisely 4π a2(t0) r
2
e . In addition, we should keep in mind that L is
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’
’

dl

r

to

te

re eθ
eθ

re

Figure 2.4: Angular diameter – redshift relation. We consider an object
of fixed size dl and fixed redshift, sending a light signal at time te that we
receive at present time t0. All photons travel by definition with θ =constant.
However, the bending of their trajectories in the (t, r) plane depends on
the spatial curvature and on the scale factor evolution. So, for fixed te,
the comoving coordinate of the object, re, depends on curvature. The red
lines are supposed to illustrate the trajectory of light in a flat universe with
k = 0. If we keep dl, a(t) and te fixed, but choose a positive value k > 0,
we infer from equation (2.13) that the new coordinate re

′ has to be smaller.
But dl is fixed, so the new angle dθ′ has to be bigger, as easily seen on
the figure for the purple lines. So, in a positively curved universe, objects
are seen under a larger angle. Conversely, in a negatively curved universe,
they are seen under a smaller angle. Important remark: here, the past
line cone has be drawn as a convex cone. Instead, for realistic
cosmological scenarios, the cone is concave.

a flux (i.e., an energy by unit of time) and l a flux density (energy per unit
of time and surface). But the energy carried by each photon is inversely
proportional to its physical wavelength, and therefore to a(t). This implies
that the energy of each photon has been divided by (1 + ze) between the
time of emission and now, and explains one of the two factors (1 + ze) in
(2.39). The other factor comes from the change in the rate at which pho-
tons are emitted and received (we have already seen in section 2.2.2 that
since λ scales like (1 + ze), both the energy and the frequence scale like
(1 + ze)

−1).

We see that the luminosity distance is not indepent from the angular
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distance:

dL = a(t0) re (1 + ze) = a(te) re (1 + ze)
2 = (1 + ze)

2dA . (2.41)

Like dA, the luminosity distance can be written formally as a function of
ze:

dA = a(t0) (1 + ze) fk

(∫ ze

0

c dz

a(t0)H(z)

)

. (2.42)

Again, we would need to know the function H(z) and the value of k in order
to calculate explicitly the luminosity distance – redshift relation dL(ze). In
the limit z −→ 0, the three definition of distances given in the past sections
(namely: a(t0)χ, dA and dL) are all equivalent and reduce to the usual
definition of distance d in Euclidean space, related to the redshift through
d = z(c/H0). Hence, the measurement of dA(z) and dL(z) at small redshift
does not bring new information with respect to a Hubble diagram (i.e., it
only allows to measure one number H0), while measurements at high red-
shift depend on the spatial curvature and the dynamics of expansion. We
will see in the next chapter that dL(z) has been measured for many super-
novae of type Ia till roughly z ∼ 2, leading to one of the most intriguing
discovery of the past years.

In summary of this section, according to General Relativity, the homo-
geneous universe is curved by its own matter content, and the space–time
curvature can be described by one number plus one function: the comoving
spatial curvature k, and the scale factor a(t). We should now be able to
relate these two quantities with the source of curvature: the matter density.

2.3 The Friedmann law

In the rest of this course, we will use units such that c = h̄ = kB = 1 for
simplicity.

2.3.1 Einstein’s equation

The relationship between the properties of matter in one point and those
of curvature in the same point is given by the Einstein equation

Gµν = 8πG Tµν . (2.43)

The Einstein tensor Gµν can be computed for the FLRW metric using
Christoffel’s symbols. It is found to be diagonal (G0i = Gi6=j = 0) and
isotropic (G11 = G22 = G33). In fact, only diagonal and isotropic Einstein
and energy-momentum tensors are compatible with the assumption of a
homogeneous, isotropic universe with a comoving coordinate system. The
most general energy-momentum tensor in such an idealized universe must
be in the form

T µ
ν =









ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p









(2.44)

where ρ and p stand for the energy density and pressure of the cosmological
fluid. The first component of the Einstein equation reads

G00 = 3

[

k

a2
+

(

ȧ

a

)2
]

. (2.45)
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This expression is interesting to discuss. In units with c = 1, G00 appears
with the dimension of an inverse squared distance, representing intuitively
the curvature of the space-time manifold. Here, indeed, G00 is the sum of
the inverse squared spatial curvature radius, Rc(t) = ±a/

√

|k|, and of the
inverse squared Hubble radius, RH(t) = a/ȧ, with a multiplicative factor 3
(coming from the number of spatial dimensions). We see that the Hubble
radius really plays the role of a curvature radius for space-time. We can
write now the first Einstein equation G00 = 8πG T00 in the FLRW universe,

3

[

k

a2
+

(

ȧ

a

)2
]

= 8πGρ , (2.46)

or equivalently,

H2 =

(

ȧ

a

)2

=
8πG
3

ρ− k

a2
. (2.47)

The above relation between the scale factor a(t), the comoving spatial cur-
vature k and the homogeneous energy density of the universe ρ(t) is called
the Friedmann law. Together with the propagation of light equation, this
law is the key ingredient of the Friedmann-Lemâıtre model.

In special/general relativity, the total energy of a particle is the sum of
its rest energy E0 = mc2 (i.e. E0 = m in units c = 1), plus its momentum
energy. So, if we consider only non-relativistic particles like those forming
galaxies, we can neglect the momentum energy and write ρ = ρmass. Then,
the Friedmann equation looks exactly like the Newtonian expansion law
(1.9), excepted that the function r(t) (representing previously the position
of objects) is replaced by the scale factor a(t). Of course, the two equations
look the same, but they are far from being equivalent. First, we have
already seen in section 2.2.2 that although the distinction between the scale
factor a(t) and the classical position r(t) is irrelevant at short distance, the
difference of interpretation between the two is crucial at large distances –
of order of the Hubble radius (in particular, in one case the existence of
objects with d > RH and z > 1 is violating the speed-of-light limit, in the
other case it is not). Second, we have seen in section 1.3.3 that the term
proportional to k seems to break the homogeneity of the universe in the
Newtonian formalism, while in the Friedmann model, when it is correctly
interpreted as the spatial curvature term, it is perfectly consistent with the
Cosmological Principle.

The next crucial difference between the Friedmann law and the Newto-
nian expansion law is the possibility to account for a homogeneous, isotropic
fluid of relativistic particles, as we shall see in the next subsection.

2.3.2 Energy conservation

The Einstein equation implies Bianchi identities of the form Gν
µ;ν = T ν

µ;ν =
0. The first Bianchi identity T ν

0;ν = 0 is nothing but the energy conservation
equation. In the FLRW universe it reduces to:

ρ̇ = −3 ȧ
a
(ρ+ p) . (2.48)

Hence, the relation between ρ and a (i.e. the way in which the energy gets
diluted with the universe expansion) depends crucially on the pressure – or
more precisely, on the equation of state p(ρ). The most important limiting
case in cosmology are:
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• non-relativistic matter. In the limit of strongly non-relativistic mat-
ter, such as comobile objects, the negligible kinetic energy implies
p = 0 (in absence of kinetic energy, a box enclosing the fluid would
not feel any kind of pressure). If the comobile fluid represents a large-
scale approximation for a homogeneous distribution of galaxies, then
this approximation is fine. Hence:

ρ̇ = −3 ȧ
a
ρ ⇒ ρ ∝ a−3. (2.49)

This result is obvious. For objects with negligible velocities, the en-
ergy density is equal to the mass density, which is conserved inside
any given comoving volume, since the number of comobile objects in a
comoving volume is by definition constant. Since a comoving volume
V increases like V ∝ a3 in physical units, ρ decreases like a−3.

• ultra-relativistic matter. In the limit of ultra-relativistic matter, such
as photons or massless neutrinos, the particle velocity v = c generates
pressure. We know from statistical thermodynamics that an ultra-
relativistic gas has an equation of state p = ρ/3. Hence:

ρ̇ = −3 ȧ
a
(1 +

1

3
)ρ = −4 ȧ

a
ρ ⇒ ρ ∝ a−4. (2.50)

We conclude that an ultra-relativistic fluid dilutes faster than a non-
relativistic medium with the universe expansion. This can be under-
stood in the following way. A homogeneous, ultra-relativistic fluid can
be thought to be a gas of fast moving particles, each with v = c, ei-
ther free-streaming or interacting with Brownian motions, such that
at any time the density of particles is the same everywhere in the
universe. The cosmological fluid invoked in the FLRW model could
include such a component. In this case, at a given time, a comoving
volume V contains N ultra-relativistic particles of individual energy
E = ν = 1/λ (still in units with c = h̄ = 1). As time passes by,
V increases like a3, N is fixed (the particles move in and out of the
volume, but the number of particles remains constant, otherwise the
assumption of homogeneity would be violated, since V would become
an over dense or underdense region). Finally, E scales like a−1. Hence
the energy density in the volume scales like ρ ∝ E/V ∝ a−4.

In the jargon of cosmology, the ultra-relativistic component of the cos-
mological fluid is usually called “radiation”, while the word “matter” is
reserved to the non-relativistic one. The Friedmann equation is true for
any types of matter, relativistic or non-relativistic; if there are different
species, the total energy density ρ is the sum over the density of all species.

2.3.3 Cosmological constant

When Einstein introduced its theory, he noticed that a simple geometrical
term can be added to the left-hand side without violating any principle:

Gµν + Λgµν = 8πG Tµν . (2.51)

The number Λ (which has the dimension of an inverse squared time, as
can be seen when c is restored) should depend neither on space, neither
on time. It is called the cosmological constant. At some point Einstein
proposed that Λ could be non-zero and negative in order to allow for a
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static solution to the universe equations. Then he stepped back. Anyway,
we see that the cosmological constant above is rigorously equivalent to a
homogeneous fluid with energy-momentum tensor

T µ
ν =

Λ

8πG
gµν =









Λ
8πG 0 0 0
0 Λ

8πG 0 0
0 0 Λ

8πG 0
0 0 0 Λ

8πG









. (2.52)

By comparison with Eq. (2.44), we find that this fluid has ρ = −p = Λ/8πG.
Looking at Eq. (2.48), we see that the equation of state p = −ρ implies
ρ̇ = 0, consistently with the fact that Λ should not vary with time.

A priori, a cosmological constant could be present in the universe, wither
as a purely geometrical term (as in the Einstein proposal) or as some form of
energy never being diluted. The vacuum energy which appears in quantum
field theory (in particular, during a phase transition such as a spontaneous
symmetry breaking) is of this kind: it does not dilute, and as long as the
fundamental state of the theory is invariant, it remains indistinguishable
from a cosmological constant. We will see that this term is probably playing
an important role in our universe.

2.3.4 Various possible scenarios for the history of the
universe

Let us write the Friedmann law including all possible contributions to the
homogeneous cosmological fluid mentioned so far:

H2 =

(

ȧ

a

)2

=
8πG
3
ρR +

8πG
3
ρM −

kc2

a2
+

Λ

3
(2.53)

where ρR is the radiation density and ρM the matter density. The order in
which we wrote the four terms on the right–hand side – radiation, matter,
spatial curvature, cosmological constant – is not arbitrary. Indeed, they
evolve with respect to the scale factor as a−4, a−3, a−2 and a0. So, if
the scale factors keeps growing, and if these four terms are present in the
universe, there is a chance that they all dominate the expansion of the
universe one after each other (see figure 2.5). Of course, it is also possible
that some of these terms do not exist at all, or are simply negligible. For
instance, some possible scenarios would be:

• only matter domination, from the initial singularity until today (we’ll
come back to the notion of Big Bang later).

• radiation domination → matter domination today.

• radiation dom. → matter dom. → curvature dom. today

• radiation dom. → matter dom. → cosmological constant dom. today

But all the cases that do not respect the order (like for instance: curvature
domination → matter domination) are impossible.

During each stage, if we assume that one component strongly dominates
the others, the behavior of the scale factor, Hubble parameter and Hubble
radius are given by:

1. Radiation domination:

ȧ2

a2
∝ a−4, a(t) ∝ t1/2, H(t) =

1

2t
, RH(t) = 2t. (2.54)

So, the universe is in decelerated power–law expansion.
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Figure 2.5: Evolution of the square of the Hubble parameter, in a scenario in
which all typical contributions to the universe expansion (radiation, matter,
curvature, cosmological constant) dominate one after each other.

2. Matter domination:

ȧ2

a2
∝ a−3, a(t) ∝ t2/3, H(t) =

2

3t
, RH(t) =

3

2
t. (2.55)

Again, the universe is in power–law expansion, but it decelerates more
slowly than during radiation domination.

3. Negative curvature domination (k < 0):

ȧ2

a2
∝ a−2, a(t) ∝ t, H(t) =

1

t
, RH(t) = t. (2.56)

A negatively curved universe dominated by its curvature is in linear
expansion.

4. Positive curvature domination: if k > 0, and if there is no cosmo-
logical constant, the right–hand side finally goes to zero: expansion
stops. After, the scale factor starts to decrease. H is negative, but
the right–hand side of the Friedmann equation remains positive. The
universe recollapses. We know that we are not in such a phase, be-
cause we observe the universe expansion. But a priori, we might be
living in a positively curved universe, slightly before the expansion
stops.

5. Cosmological constant domination:

ȧ2

a2
→ constant, a(t) ∝ exp(Λt/3), H = 1/RH =

√

Λ/3.

(2.57)
The universe ends up in exponentially accelerated expansion.

So, in all cases, there seems to be a time in the past at which the scale
factor goes to zero, called the initial singularity or the “Big Bang”. The
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Friedmann description of the universe is not supposed to hold until a(t) = 0.
At some time, when the density reaches a critical value called the Planck
density, we believe that gravity has to be described by a quantum theory,
where the classical notion of time and space disappears. Some proposals
for such theories exist, mainly in the framework of “string theories”. Some-
times, string theorists try to address the initial singularity problem, and to
build various scenarios for the origin of the universe. Anyway, this field is
still very speculative, and of course, our understanding of the origin of the
universe will always break down at some point. A reasonable goal is just
to go back as far as possible, on the basis of testable theories.

The future evolution of the universe heavily depends on the existence
of a cosmological constant. If the latter is exactly zero, then the future
evolution is dictated by the curvature (if k > 0, the universe will end up
with a “Big Crunch”, where quantum gravity will show up again, and if
k ≤ 0 there will be eternal decelerated expansion). If instead there is a
positive cosmological term which never decays into matter or radiation,
then the universe necessarily ends up in eternal accelerated expansion.

2.3.5 Cosmological parameters

In order to know the past and future evolution of the universe, it would
be enough to measure the present density of radiation, matter and Λ, and
also to measure H0. Then, thanks to the Friedmann equation, it would be
possible to extrapolate a(t) at any time4. Let us express this idea mathe-
matically. We take the Friedmann equation, evaluated today, and divide it
by H2

0 :

1 =
8πG
3H2

0

(ρR0 + ρM0)−
k

a20H
2
0

+
Λ

3H2
0

. (2.58)

where the subscript 0 means “evaluated today”. Since by construction, the
sum of these four terms is one, they represent the relative contributions to
the present universe expansion. These terms are usually written

ΩR =
8πG
3H2

0

ρR0, (2.59)

ΩM =
8πG
3H2

0

ρM0, (2.60)

Ωk =
k

a20H
2
0

, (2.61)

ΩΛ =
Λ

3H2
0

, (2.62)

(2.63)

and the “matter budget” equation is

ΩR +ΩM − Ωk +ΩΛ = 1. (2.64)

The universe is flat provided that

Ω0 ≡ ΩR +ΩM +ΩΛ (2.65)

4At least, this is true under the simplifying assumption that one component of one
type does not decay into a component of another type: such decay processes actually
take place in the early universe, and could possibly take place in the future.
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is equal to one. In that case, as we already know, the total density of
matter, radiation and Λ is equal at any time to the critical density

ρc(t) =
3H2(t)

8πG . (2.66)

Note that the parameters Ωx, where x ∈ {R,M,Λ}, could have been defined
as the present density of each species divided by the present critical density:

Ωx =
ρx0
ρc0

. (2.67)

The physical density today ρx0 of a component can be expressed in standard
units, e.g. g.cm−3. Another alternative is to decompose it as:

ρx0 = Ωx
3H2

0

8πG = Ωxh
2 3(100 km.s−1.Mpc−1)2

8πG (2.68)

= Ωxh
2 × 1.8788× 10−29g.cm−3 . (2.69)

Hence, the physical density can be parametrized with the dimensionless
number Ωxh

2. Later we will adopt the notation ωx ≡ Ωxh
2.

So far, we conclude that the evolution of the Friedmann universe can
be described entirely in terms of four parameters, called the “cosmological
parameters”:

ΩR,ΩM,ΩΛ, H0. (2.70)

One of the main purposes of observational cosmology is to measure the
value of these cosmological parameters.
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Chapter 3

The Hot Big Bang
cosmological model

3.1 Historical overview

Curiously, after the discovery of the Hubble expansion and of the Friedmann
law, there were no significant progresses in cosmology for a few decades.
The most likely explanation is that most physicists were not considering
seriously the possibility of studying the universe in the far past, near the
initial singularity, because they thought that it would always be impossible
to test any cosmological model experimentally.

Nevertheless, a few pioneers tried to think about the origin of the uni-
verse. At the beginning, for simplicity, they assumed that the expansion of
the universe was always dominated by a single component, the one forming
galaxies, i.e., pressureless matter. Since going back in time, the density of
matter increases as a−3, matter had to be very dense at early times. This
was formulated as the “Cold Big Bang” scenario.

According to Cold Big Bang, in the early universe, the density was so
high that matter had to consist in a gas of nucleons and electrons. Then,
when the density fell below a critical value, some nuclear reactions formed
the first nuclei - this era was called nucleosynthesis. But later, due to
the expansion, the dilution of matter was such that nuclear reactions were
suppressed (in general, the expansion freezes out all processes whose char-
acteristic time–scale becomes smaller than the so–called Hubble time–scale
H−1). So, only a given number of nuclei had time to form, in some pro-
portions which remained frozen afterward. After nucleosynthesis, matter
consisted in a gas of nuclei and electrons, with electromagnetic interactions.
When the density became even smaller, they finally combined into atoms
– this second transition is called recombination. At late time, any small
density inhomogeneity in the gas of atoms was enhanced by gravitational
interactions. The atoms started to accumulate into clumps like stars and
planets - but this is a different story.

In the middle of the XX-th century, a few particle physicists tried to
build the first models of nucleosynthesis – the era of nuclei formation. In
particular, four groups – each of them not being aware of the work of
the others – reached approximately the same negative conclusion: in the
Cold Big Bang scenario, nucleosynthesis does not work properly, because
the formation of hydrogen is strongly suppressed with respect to that of
heavier elements. But this conclusion is at odds with observations: using
spectrometry, astronomers know that there is a lot of hydrogen in stars and

37
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clouds of gas. The groups of the Russo-American Gamow in the 1940’s, of
the Russian Zel’dovitch (1964), of the British Hoyle and Tayler (1964),
and of Peebles in Princeton (1965) all reached this conclusion. They also
proposed a possible way to reconcile nucleosynthesis with observations. If
one assumes that during nucleosynthesis, the dominant energy density is
that of photons, the expansion is driven by ρR ∝ a−4, and the rate of
expansion is different. This affects the kinematics of the nuclear reactions
in such way that enough hydrogen can remain.

In that case, the universe would be described by a Hot Big Bang sce-
nario, in which the radiation density dominated at early time. Before nu-
cleosynthesis and recombination, the mean free path of the photons was
very small, because they were continuously interacting – first, with elec-
trons and nucleons, and then, with electrons and nuclei. So, their motion
could be compared with the Brownian motion in a gas of particles: they
formed what is called a “black–body”. In any black–body, the many inter-
actions maintain the photons in thermal equilibrium, and their spectrum
(i.e., the number density of photons as a function of wavelength) obeys to
a law found by Planck in the 1890’s. Any “Planck spectrum” is associated
with a given temperature.

Following the Hot Big Bang scenario, after recombination, the photons
did not see any more charged electrons and nuclei, but only neutral atoms.
So, they stopped interacting significantly with matter. Their mean free
path became infinite, and they simply traveled along geodesics – excepted
a very small fraction of them which interacted accidentally with atoms, but
since matter got diluted, this phenomenon remained subdominant. So, es-
sentially, the photons traveled freely from recombination until now, keeping
the same energy spectrum as they had before, i.e., a Planck spectrum, but
with a temperature that decreased with the expansion. This is an effect of
General Relativity: the wavelength of an individual photon is proportional
to the scale factor; so the shape of the Planck spectrum is conserved, but
the whole spectrum is shifted in wavelength. The temperature of a black–
body is related to the energy of an average photon with average wavelength:
T ∼<E >∼ h̄c/ < λ>. So, the temperature decreases like 1/ < λ>, i.e.,
like a−1(t).

The physicists that we mentioned above noticed that these photons
could still be observable today, in the form of a homogeneous background
radiation with a Planck spectrum. Following their calculations – based on
nucleosynthesis – the present temperature of this cosmological black–body
had to be around a few Kelvin degrees. This would correspond to typical
wavelengths of the order of one millimeter, like microwaves.

These ideas concerning the Hot Big Bang scenario remained completely
unknown, excepted from a small number of theorists.

In 1964, two American radio–astronomers, A. Penzias and R. Wilson,
decided to use a radio antenna of unprecedented sensitivity – built initially
for telecommunications – in order to make some radio observations of the
Milky Way. They discovered a background signal, of equal intensity in all
directions, that they attributed to instrumental noise. However, all their
attempts to eliminate this noise failed.

By chance, it happened that Penzias phoned to a friend at MIT, Bernard
Burke, for some unrelated reason. Luckily, Burke asked about the pro-
gresses of the experiment. But Burke had recently spoken with one of his
colleagues, Ken Turner, who was just back from a visit Princeton, dur-
ing which he had followed a seminar by Peebles about nucleosynthesis and
possible relic radiation. Through this series of coincidences, Burke could



3.2. QUANTUM THERMODYNAMICS IN THE FLRW UNIVERSE 39

−3

a−4

a

a

H2

Oγ

equality

nucleosynthesis
decoupling

a now

Figure 3.1: On the top, evolution of the square of the Hubble parameter
as a function of the scale factor in the Hot Big Bang scenario. We see
the two stages of radiation and matter domination. On the bottom, an
idealization of a typical photon trajectory. Before decoupling, the mean
free path is very small due to the many interactions with baryons and
electrons. After decoupling, the universe becomes transparent, and the
photon travels in straight line, indifferent to the surrounding distribution
of electrically neutral matter.

put Penzias in contact with the Princeton group. After various checks, it
became clear that Penzias and Wilson had made the first measurement of
a homogeneous radiation with a Planck spectrum and a temperature close
to 3 Kelvins: the Cosmic Microwave Background (CMB). Today, the CMB
temperature has been measured with great precision: T0 = 2.726 K.

This fantastic observation was a very strong evidence in favor of the Hot
Big Bang scenario. It was also the first time that a cosmological model was
checked experimentally. So, after this discovery, more and more physicists
realized that reconstructing the detailed history of the universe was not
purely science fiction, and started to work in the field.

The CMB can be seen in our everyday life: fortunately, it is not as
powerful as a microwave oven, but when we look at the background noise
on the screen of a TV set, one fourth of the power comes from the CMB!

3.2 Quantum thermodynamics in the FLRW
universe

We recall that we are using units such that c = h̄ = kB = 1.

Let us assume that the cosmological fluids is formed of many differ-
ent species Xi (which can be either interacting with other species or free-
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streaming), each described by a phase-space distribution function fi(x
µ, pν).

The homogeneity assumption implies that fi should be the same every-
where; isotropy implies that it should not depend on the direction of the
three-momentum pi, but only on its modulus p; finally, the energy of each
particle is given by E = p0 =

√

m2
i + p2. Hence the phase-space distribu-

tion can only be a function of time and of the modulus p: fi = fi(p, t). The
number density, energy density and pressure of each species read:

ni(t) =
gi

(2π)3

∫

d3p fi(p, t) , (3.1)

ρi(t) =
gi

(2π)3

∫

d3p Ei fi(p, t) , (3.2)

pi(t) =
gi

(2π)3

∫

d3p
p2

3Ei
fi(p, t) , (3.3)

where Ei =
√

m2
i + p2, and gi is the number of quantum degrees of freedom

(spin or helicity states) of the considered species (e.g. gi = 2 for photons
γ, electrons e−, positrons e+, protons p, anti-protons p̄, neutrons n, anti-
neutrons n̄, or gi = 1 for neutrinos νi and anti-neutrons ν̄i where i is one
of e, µ or τ).

Interactions can be represented by a set of reactions 1 + 2↔ 3 + 4 (for
elastic scattering, 1 = 3 and 2 = 4). In general the evolution of each species
due to the above reaction is represented by a Boltzmann equation of the
type:

dfi
dt

= F [f1, f2, f3, f4] (3.4)

where the right-hand side, which is quite complicated to write in the general
case, is a function of the distribution of each species involved in the reaction.

3.2.1 Kinetic (or thermal) equilibrium

If two species i and j have frequent interactions (like elastic scattering
i + j −→ i + j), they exchange momentum in a random way and reach
a kinetic equilibrium called “thermal equilibrium”. Many species can be
in thermal equilibrium, forming a so-called “thermal bath” or “thermal
plasma”. In thermal equilibrium, the distributions of each species depend
on a common parameter, the temperature T . However the distributions fi
are not all equal to each other. They depend on:

• the mass mi of each species (the mass appears in the energy of each
particle, Ei =

√

m2
i + p2) ;

• an additional parameter µi, the “chemical potential” of the species,
which encodes the effect of the balance between the many reactions
(inelastic scatterings) involved in the plasma;

• at the quantum level, the fact that each species should obey to the
Bose-Einstein statistics for bosons (e.g. photons), or to the Fermi-
Dirac statistics for fermions (in this chapter, apart from photons, we
will only consider fermions).

Hence, a plasma of N species in thermal equilibrium with known massesmi

and known statistics (fermion or boson) can be entirely described in terms
of a maximum of N + 1 free parameter (T, µ1, ...µN ), which values can be
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inferred from considerations e.g. on energy conservation, quantum num-
ber conservation, and on the the kinetic of the various reactions involved.
Thermal distributions read

fi =











1

exp[
Ei−µi

T
]+1

(Fermi-Dirac) ,

1

exp[
Ei−µi

T
]−1

(Bose-Einstein) .
(3.5)

The probability of interaction between individual particles depends on a
cross-section σ and on their relative velocity v. In thermal equilibrium, the
interaction between two species i and j is characterized by a “thermally
averaged cross-section – velocity product” 〈σv〉. The interaction rate (or
scattering rate) of i is given by Γi = nj〈σv〉, that of j by Γj = ni〈σv〉. A
detailed study would show that the scattering is efficient enough for main-
taining i in thermal equilibrium with j provided that the scattering rate
Γi is larger than the inverse of the characteristic time set by the universe
expansion: namely, Γi > H . Intuitively, when Γi < H , the cross-section
is so low or the species j is so diluted that the chance for i to scatter over
j within a time comparable to the age of the universe becomes negligible.
When all possible scattering reactions which could maintain i in thermal
equilibrium have Γi < H , the species i decouples from thermal equilibrium.
In this case, assuming that the particles are stable and non-interacting,
they can only free-stream with a frozen distribution (i.e., the distribution
remains identical to the one at last scattering, apart from the effect of the
universe expansion: p ∝ a).

Let us review a few basic properties of thermal equilibrium which will
be useful in the following sections.

• Density of relativistic particles with negligible chemical potential. Let
us assume for simplicity that |µi| ≪ T . In this case,

fi =
1

exp[
√

m2
i + p2/T ]± 1

. (3.6)

From Eq. (3.1), we see that in general the particles contributing
mostly to the number density are those for which p2fi(p) is maxi-
mum. If T ≫ mi, the function p2fi(p) peaks at a value of p of the
same order of magnitude as T , and hence for a huge majority of par-
ticles p ≫ mi. This corresponds to a gas of relativistic particles.
The number density, energy density and pressure can be computed
by integrating over the above distribution in the limit mi −→ 0. The
result is found to be:

ni =
ζ(3)

π2
giT

3

(

×3

4
for fermions

)

, (3.7)

ρi =
π2

30
giT

4

(

×7

8
for fermions

)

, (3.8)

pi =
1

3
ρi , (3.9)

where ζ(x) is the Riemann zeta function (ζ(3) ≃ 1.20206...), and the
extra factors for fermions come from the +1 term instead of −1 in
the denominator of fi. Note that the usual equation of state of a
relativistic gas, p =

∑

i pi =
∑

i ρi/3 = ρ/3, is recovered here. We
conclude that boson and fermions in thermal equilibrium with each
other and such that mi ≪ T and |µi| ≪ T share roughly the same
number/energy density, apart from possible factors of order one.
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• Density of non-relativistic particles. In the non-relativistic limitmi ≫
T , a detailed integration shows that for both fermions and bosons

ni = gi

(

miT

2π

)3/2

exp[− (mi − µi)

T
] , (3.10)

ρi = mini , (3.11)

pi = Tni ≪ ρi . (3.12)

Let us compare the number density of these particles with that of
relativistic ones still in thermal equilibrium with them:

nNR
i

nR
j

= e
µi
T

[

gi
gj

√
π

2
√
2ζ(3)

]

(mi

T

)3/2

e−
mi
T . (3.13)

The factor between brackets is of order one. The part after the brack-
ets is much smaller than one since we assumedmi ≫ T . Hence, unless
the chemical potential is huge (µi ≫ mi ≫ T , a case that will never
occur in the realistic situations considered later), the number density
of non-relativistic species in thermal equilibrium is exponentially sup-
pressed with respect to that of relativistic ones. The total number
density in the thermal plasma is dominated by relativistic compo-
nents.

3.2.2 Chemical equilibrium

Let’s consider an inelastic scattering reaction of the type 1 + 2 ←→ 3 +
4. When this reaction is frequent enough, the relative number density of
particles cannot be arbitrary, it must obey to the chemical equilibrium
relation:

µ1 + µ2 = µ3 + µ4 . (3.14)

When the reaction is not frequent, it is unable to maintain chemical equi-
librium, and the kinetic of each particle production/annihilation must be
followed using the Boltzmann equation. However, these particules can still
be in thermal equilibrium (for instance, due to e.g. elastic scattering with
photons). If all four species are still in thermal equilibrium, the Boltzmann
equation describing e.g. the evolution of n1 due to the above reaction takes
a much simpler form than in the general case:

ṅ1 + 3Hn1 = n1n2〈σv〉
[

exp

(−µ1 − µ2 + µ3 + µ4

T

)

− 1

]

. (3.15)

Here, we did two assumptions (apart for thermal equilibrium). First, we as-
sumed that the cross section 〈σv〉 is the same for the reactions 1+2 −→ 3+4
and 3+4 −→ 1+2. Otherwise, the right-hand side would split in two terms
for creation and annihilation. However, for the realistic cases considered
later, it is sufficient to consider a symmetric cross section. Second, we as-
sumed that 1 + 2←→ 3 + 4 is the only reaction leading to the creation or
annihilation of type 1 particles. If there are other processes involved, the
right-hand side should contain a sum over all possible creation and decay
channels.

Note that the factor n2〈σv〉 in the right-hand side is precisely the scat-
tering rate Γ1 for the scattering of type 1 particles. Hence, the second term
on the left-hand side is of the order of Hn1, while the right-hand side is
of the order of n1Γ1 times the brackets. We see that if Γ1 ≫ H , the term
involvingH can be neglected; in this regime, the differential equation forces
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n1 to reach an equilibrium value for which the brackets vanish, i.e. for which
µ1+µ2 = µ3+µ4: chemical equilibirum will be maintained at any time. In
the other limit, when Γ1 ≪ H , the right-hand side is negligible, and there
is no reason for the relation µ1 + µ2 = µ3 + µ4 to be maintained; instead,
ṅ1 = −3Hn1, which is equivalent to n1 ∝ a−3: this simply corresponds
to particle number conservation for a decoupled species. The intermediate
regime can only be followed by integrating the above Boltzmann equation.

3.2.3 Conservation of quantum numbers

If the number of particles of a given type i was conserved in any comoving
volume, we would have nia

3 =constant. This is usually not the case since
in general, the particles i can be destroyed or created by various inelastic
scatterings. So, conservation laws do not apply to the number density of
individual particles, but to that of quantum numbers.

Let us consider for instance the conservation of electric charge. We
can define n+ as the sum over the number density of all particles with
positive charge, weighted by the value of their charge; same for n−. The
total density of electric charge in the universe is then simply nQ ≡ n+ −
n−. Electric charge is a conserved number, so the charge in any comoving
volume must be constant. Hence nQa

3 is constant. The same holds for
other quantities such as baryon number (nBa

3 =constant), lepton number
(nLa

3 =constant), etc. (excepted at very early times for which baryon or
lepton number conservation can be violated in special circumstances, as we
shall see later).

However, in the case of the electric charge, we have an even stronger
constraint: since the electric charge is associated with Coulomb forces and
the universe expansion is only governed by gravitational forces, the universe
must be globally neutral: hence nQ = 0 and n+ = n−.

Note that each conserved quantum number is usually associated with
a non-zero chemical potential. When a particle Xi carries no conserved
charge, nothing prevents reactions of the type nXi → mXi with n 6= m.
This is the case for photons. For instance, as long as the universe contains
electrons and positrons, the two reactions

3γ ←→ e+ + e− ←→ 2γ (3.16)

are in chemical equilibrium, hence 2µγ = 3µγ and µγ = 0. In addition, the
above reactions tell us that electrons and positrons (which carry electric
charges ±1 and lepton numbers ±1) have opposite chemical potentials,
µe+ = −µe− . It is not possible to find a reaction that would lead to
the conclusion that µe+ = µe− = 0 without violating charge or lepton
number conservation. A species carrying a conserved charge can have a
zero chemical potential, but only if we invoke external constraints on top
of chemical equilibrium considerations.

3.2.4 Entropy conservation in the thermal bath.

We just said that there is no reason for conserving the total number density
of particles in a given comoving volume. However, it is possible to show
(although we skip the proof in this course) that the total entropy (i.e. the
number of possible states) in any comoving volume is conserved, and that
the entropy density of a thermal plasma reads

s =
ρ+ p

T
(3.17)
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where ρ and p are the total density and pressure of species in thermal equi-
librium. Further justifications of this result will be provided in
the course of Pierre Salati (next semester). Let us consider a ther-
mal bath composed of a number of relativistic and non-relativistic species,
and let us assume further that the density of non-relativistic particles is
negligible with respect to that of relativistic ones (this assumption holds
throughout the radiation dominated era in the early universe). The total
density and pressure are then equal to

ρtot =
π2

30
g∗T

4 , ptot =
1

3
ρtot , (3.18)

where we have introduced the number of relativistic degrees of freedom g∗
defined through

g∗ =
∑

rel.bosons

gi +
7

8

∑

rel.fermions

gi . (3.19)

The entropy density is then

s =
4

3

π2

30
g∗T

3 , (3.20)

and its conservation implies g∗T
3a3 =constant. We see that as long as g∗

is constant, T ∝ a−1. However, when g∗ varies (which can happen e.g. if
one species becomes non-relativistic at some point), the temperature varies

like T ∝ g−1/3
∗ a−1.

Note that entropy conservation is really different from number density
conservation. For instance, in the above example, the number density reads

ntot =
ζ(3)

π2

[

∑

rel.bosons

gi +
3

4

∑

rel.fermions

gi

]

T 3 . (3.21)

The term between brackets differs from g∗ due to the factor 7/8. Hence,
when g∗ varies, the quantity ntota

3 is not constant, since the entropy is not
equivalent to the number density!

3.3 The Thermal history of the universe

3.3.1 Early stages

The most early stages in the evolution of the universe are still partially
unknown and source of active research, while late times are very well con-
strained and obey to models validated by observations. In summary, the

epoch during which the energy scale ρ
1/4
tot of the universe was smaller than

100 MeV is rather well understood, while early stages are still quite uncer-
tain. In this subsection, we will provide a very brief overview of what could
have happened above 100 MeV. In the next subsections, we will describe
in more details the main events taking place below 100 MeV.

Following the most conventional picture, gravity became a classical the-
ory (with well–defined time and space dimensions) at a time called the
Planck time 1: t ∼ 10−36s, ρ ∼M4

P ∼ (1018GeV)4 (where the Planck mass
is defined by MP = G−1/2: the Friedmann equation can also be written as
3M2

PH
2 = 8πρ, and the Planck time corresponds toH =MP , i.e. to a Hub-

ble radius equal to the Planck length RH = 1/MP = λP ; all these relations

1By convention, the origin of time is chosen by extrapolating the scale-factor to
a(0) = 0. Of course, this is only a convention, it has no physical meaning.
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are written as usual for c = h̄ = kB = 1 units). Later, there was most prob-
ably a stage of accelerated expansion called inflation. Current observations
provide some indirect, but precise information on inflation, which is quite
extraordinary since this stage took place at extremely high energy. Infla-
tion might be related to the spontaneous symmetry breaking of the GUT
(Grand Unified Theory) symmetry around t ∼ 10−32s, ρ ∼ (1016GeV)4.
We will describe the motivations and predictions of inflation in the last
chapter.

After inflation, during a stage called reheating, the scalar field respon-
sible for inflation decayed into the particles of the standard model (three
families of quarks, anti-quarks, leptons and anti-leptons; Higgs boson(s);
gauge bosons; and possibly also some particles belonging to extensions of
the standard model, like maybe supersymmetric particles), which reached
thermal equilibrium after some time. At such high energy, most (if not all)
particles where ultra-relativistic (T > mi), and the total energy and pres-
sure were given by Eq. (3.18). The end of reheating marks the beginning
of the radiation dominated era suggested by Gamow, Peebles and others.
Note that during this era, T ∝ a−1 and ρ ∝ a−4 in good approximation,
although these scaling are slightly violated each time that g∗ varies (this
occurs from time to time e.g. when some particles become non-relativistic).
Around t ∼ 10−6s, ρ ∼ (100 GeV)4, the EW (Electro Weak) symmetry is
spontaneously broken and the quarks acquire a mass through the Higgs
mechanism. Later, at t ∼ 10−4s, ρ ∼ (100 MeV)4, the QCD (Quantum
Chromo Dynamics) transition forces quarks to get confined into hadrons:
baryons and mesons.

All these stages are quite complicated and extremely interesting to in-
vestigate in details (here we will not touch this at all). Let us mention that
a particularly fascinating and important issue is the evolution of the baryon
and lepton number.

Let us focus first on the baryon number. Before reheating, there is no
baryon number. Hence, if the baryon number is always conserved, each time
that a particle is created during reheating with a given baryon number,
its anti-particle with opposite baryon number will also be created. The
pairs of particle-antiparticles will not annihilate in the relativistic regime.
For simplicity, let us do as is there was only one type of particle with a
baryon number, say b with baryon number B = 1 and its antiparticle b̄
with B = −1. These particles could in principle annihilate through e.g.

b+ b̄↔ nγ (3.22)

(n being the number of produced photons). Note that a particle and its
anti-particle should share the same massmb. Intuitively, as long as T ≫ mb,
the photons carry enough energy for creating pairs of b and b̄, so they will
coexist in the thermal plasma: annihilation and creation compensate each
other. However, when T < mb, the photons do not carry enough energy for
creating pairs, and only annihilation can occur: so, b and b̄ annihilate. If we
assume that the baryon number is always conserved, then the annihilation
will be total and we will be left with no baryons at all today. This is not the
case since the nuclei of atoms are made of protons and neutrons. Hence,
the baryon number conservation has to be violated at some point between
reheating and T ∼ mb. When the violation occurs, an excess of particles
with positive B can be created. This is called baryogenesis. When T ∼ mb,
all baryons annihilate with antibaryons, excepted the few ones in excess,
which remain till today.

Let us give a very simplified mathematical description of this phe-
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nomenon: after baryogenesis, the universe contains relativistic baryons and
anti-baryons in thermal and kinetic equilibrium. The reaction

b+ b̄↔ nγ (3.23)

with different possible values of n guaranties that µγ = 0 and µb = −µb̄. If
µb = 0, then nb is exactly equal to nb̄. The outcome of baryogenesis should
be a small excess of baryons, hence µb > 0. The conserved baryon number
nBa

3 is non-zero and obtains from

nB = nb−nb̄ =
gb

(2π)3

∫

d3p

[

1

exp(E−µb

T ) + 1
− 1

exp(E+µb

T ) + 1

]

. (3.24)

In the relativistic limit E = p this gives

nB =
gbT

3

6π2

[

π2
(µb

T

)

+
(µb

T

)3
]

. (3.25)

which is positive for µb > 0. As long as Ta =constant (i.e. as long as g∗ is
constant in the thermal bath), the conservation of nBa

3 implies that µb/T
is also constant. The baryon asymmetry can be parametrized by

nB

nb + nb̄

= nB/

[

2× 3

4

ζ(3)

π2
gbT

3

]

∼
[

π2
(µb

T

)

+
(µb

T

)3
]

(3.26)

but this is not a conserved number. Usually, the asymmetry is parame-
terized by nB/s, which is really a conserved number since both the baron
number nBa

3 and entropy sa3 are conserved. We will see later that in order
to obtain the correct baryon density today, we must assume that nB/s is
of the order of 10−10.

Note that when the universe is filled with a thermal plasma, s is of the
order of g∗T

3, while nγ is of the order of gγT
3 with gγ = 2. So, instead

of nB/s, we will often use the ratio nB/nγ , although strictly speaking the
second number if not conserved and differs from the first one by a factor of
the order of g∗ (which can vary between ∼ 3 and ∼ 10 during the period
that we will study in the next sections). In the recent universe we will see
that

ηb ≡
nB

nγ
∼ 5× 10−10 . (3.27)

When T ∼ mB, the number density of both nb and nb̄ drops down very
quickly due to the exp(−mb/T ) factor. Intuitively, this means that a smaller
and smaller fraction of photons have enough energy for producing b+b̄ pairs.
The assumption of thermal and kinetic equilibrium and the conservation of
entropy and baryon number provide enough equations for following µb(T )
and T (a) until nb̄ becomes really negligible. We don’t even need to do that:
it is enough to know that when nb̄ = 0, baryon number conservation simply
implies that nba

3 = nBa
3 is constant. Note that at that time

nb = gb

(

mbT

2π

)3/2

e−
(mb−µb)

T , (3.28)

so the quantity µb/T now varies with time, in order to maintain nba
3 =constant.

This description of the matter-antimatter asymmetry in the early uni-
verse was quite simplistic with respect to reality. Actually, baryogenesis and
baryon-antibaryon annihilation are two active topics of research. Baryoge-
nesis could be associated with B-violating processes during GUT symmetry
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breaking or EW symmetry breaking, or could also be induced by leptogen-
esis, for which a similar discussion can hold. The baryon-antibaryon anni-
hilation is expected to take place roughly around T ∼ 1000 MeV, which is
the order of magnitude of the proton mass; it is intimately related to the
quark-hadron transition.

3.3.2 Content of the universe around T ∼10 MeV

In the next sections, we will describe a list of phenomena induced by the
fact that the weak interactions become inefficient around 1 MeV, and also
that the MeV is the order of magnitude of binding energies in light nuclei.
Before these sections, we should look at initial conditions before T ∼MeV.

Let us list the species present after the quark-hadron transition. A
species can be present at a given time if it satisfies one of two conditions:

• either it is relativistic: m ≪ T . In this case the particle can be
easily produced by other species in the thermal bath (annihilation
and creation compensate each other).

• or it is stable thanks to the conservation of a quantum number. In
this case, the particle may have m ≫ T , but cannot decay with
violating the conservation of this number. Typically, the particles in
the category are the lightest ones carrying a given quantum number.
For instance, the proton is the lightest baryon.

Generally speaking, hadrons consist of baryons, mesons and their an-
tiparticles. Mesons carry zero baryon number and quickly annihilate. An-
tibaryons annihilate well before T ∼ 10MeV, as described above. Baryons
made of heavy quarks are unstable at the temperature considered here
since they can decay into lighter baryons (protons and neutrons). Pro-
tons are perfectly stable in the limit of no B violation since they are the
lightest baryons. Neutrons can decay into protons through beta decay
(n −→ p + e− + ν̄e) but it is possible to show that at the temperature
considered here, the inverse process is still efficient (electrons and neutrons
carry enough energy for converting a proton into a neutron: this only re-
quires mn − mp = 1.203 MeV). So, around ∼10 MeV, both protons and
neutrons are present. They are still maintained in thermal and kinetic
equilibrium by weak and electromagnetic interactions. They are of course
both non-relativistic since mn ∼ mp ∼ GeV. They have approximately
the same density nn = np, as will be shown explicitly in the section on
nucleosynthesis.

In the lepton sector, µ, µ̄, τ and τ are so heavy that they decay into
electrons and positrons. The mass of electrons and positrons is close to
0.5 MeV, so they are still relativistic at that time. Electric neutrality implies
ne− − ne+ = np. Does this imply a large asymmetry for electrons versus
positrons? Remember that nB/s is conserved and of the order of 10−10. At
the temperature considered here, we can consider that nB = np+nn ≃ 2np

and that s ∼ nγ ∼ ne− modulo factors of order at most ten. Hence,
speaking only of orders of magnitude,

ne− − ne+

ne− + ne+
∼ ne− − ne+

s
∼ nB

s
∼ 10−10 . (3.29)

We see that electric neutrality implies that the electron-positron asymmetry
is as tiny as the initial baryon asymmetry.
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Besides, the universe contains all six neutrinos: νe, νµ, ντ and their
antiparticles, maintain in thermal and kinetic equilibrium by weak inter-
actions. Their mass is at most of the order of eV, so they have no rea-
son to annihilate and contribute to the thermal plasma as ultra-relativistic
components. They could in principle carry some asymmetry associated to
chemical potentials µe, µµ and µτ (each antineutrino would then have an
opposite chemical potential due to the chemical equilibrium of the reactions
νe+ ν̄e ←→ e−+e+ ←→ γ). Due to the large mixing angles in the neutrino
mass matrix, the three potentials should share a unique value at this epoch.
This issue is still a topic of research, but since such an asymmetry is difficult
to motivate and has not been observed so far, we will assume throughout
this course that neutrino chemical potentials are null, and hence that at the
time considered here all six neutrino species share exactly the same number
density.

Finally, the universe should contain photons. All other particles are
expected to have decayed by that time, excepted one or more stable “dark
matter particle” that we will not be discussed in this course. In summary,
around T ∼ 10 MeV, the universe should contain: p, n, e−, e+, six neutrino
species, γ and possibly dark matter particles. The latter, if they exist, are
expect to be non-relativistic at that time. So the number of relativistic de-
grees of freedom is given by photons, electrons, positrons and six neutrinos:

g∗(∼ 10MeV) = 2 +
7

8
(2 + 2 + 6) = 10.75 . (3.30)

3.3.3 Neutrino decoupling

Weak interactions maintain neutrinos in thermal equilibrium through elas-
tic and inelastic interactions like e.g.

νe + e− ←→ νe + e− (3.31)

νe + ν̄e ←→ νi + ν̄i (i = µ or τ)

νe + νi ←→ νe + νi

νe + ν̄i ←→ νe + ν̄i

etc. (3.32)

which are all of the weak interaction type (they involve exchanges of weak
bosons Z0, W±). The thermally averaged cross sections of these reactions
are of the order of 〈σv〉 ∼ G2

FT
2, where GF ∼ 10−5GeV−2 is the Fermi

constant (which characterizes the magnitude of weak interactions). Hence
the relevant scattering rates are of the order of Γ = ne−〈σv〉 ∼ G2

FT
5.

Let us compare the evolution of Γ with that of the Hubble rate H2 =
(8πG/3)ρ ∼M−2

P T 4. We find that

Γ

H
∼MPG

2
FT

3 ∼
(

T

1 MeV

)3

. (3.33)

Hence, when the temperature of the plasma drops below T ∼ MeV, the
neutrinos leave thermal equilibrium, and their distribution remains frozen,
with

fi(p) =
1

exp[p/Tν] + 1
. (3.34)

By “frozen”, one means that fi varies only due to the universe expansion,
which imposes a very trivial evolution. Each decoupled particle is a free-
falling in the FLRW universe. The geodesic equation shows that for such
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particles p ∝ a−1 (we already used this result many times for photons).
Hence each individual particle has a momentum redshifting like p(t) =
p(tD)a(tD)/a(t) where tD is the time of decoupling. For particles which
decoupled when they were relativistic (like the neutrinos considered in this
section), the distribution fi(p) depends on p only through the ratio p/Tν.
So, saying that all momenta shift like a−1 is strictly equivalent to saying
that Tν shifts like a−1. Hence, after neutrino decoupling and for each of
the six species i, the product (Tνa) remains exactly constant at all times.
Besides, as long as they remain relativistic with Tν ≫ mνi , they obey to:

nνi =
3

4

ζ(3)

π2
T 3
ν ∝ a−3 , (3.35)

ρνi =
7

8

π2

30
giT

4
ν ∝ a−4 , (3.36)

pνi =
1

3
ρνi . (3.37)

Neutrino decoupling is a very smooth process because before decoupling
(and as long as the number of relativistic degrees of freedom g∗ was con-
served), we already had T = Tν =∝ a−1, nνi ∝ a−3, ρνi ∝ a−4 and
pνi = ρνi/3. Hence, from the point of view of the universe expansion,
one could say that “nothing particular happens” when neutrinos decouple.
The temperature of neutrinos and of the thermal bath remain equal, both
scaling like a−1. The entropy density before decoupling reads:

s =
ρ+ p

T

∣

∣

∣

∣

plasma

=
4

3

π2

30
g∗T

3 with g∗ = 2 +
7

8
(2 + 2 + 6) = 10.75 .

(3.38)
After decoupling, the entropy receives contribution from the plasma and
from neutrinos. We have not derived the expression of entropy for a de-
coupled relativistic species, but it is simple: it reads alike the entropy of
relativistic species in equilibrium, with the appropriate value of the tem-
perature:

s =
ρ+ p

T

∣

∣

∣

∣

plasma

+
ρν + pν
Tν

∣

∣

∣

∣

neutrinos

(3.39)

=
4

3

π2

30

(

2 +
7

8
(2 + 2)

)

T 3 +
4

3

π2

30

(

7

8
× 6

)

T 3
ν . (3.40)

Since both T and Tν scale like a−1 around the time of neutrino decou-
pling, they remain equal to each other, and the expression of the entropy
is absolutely unchanged.

3.3.4 Positron annihilation

The electron and positron mass is close to 0.5 MeV. Hence, when the tem-
perature of the plasma drops below this value, electrons and positron be-
come gradually non-relativistic. This is the same situation as the one de-
scribed previously for b and b̄: the number density of e− and e+ drops down
very quickly with respect to that of photons, due to the suppression factor
exp[−me/T ]. Basically, this means that electrons and positrons annihilate
each other without being recreated, until positrons disappear completely; a
small number of electrons survives, in equal proportion to protons in order
to ensure electric neutrality. After this process, ne− = np ∼ nB ∼ 10−10nγ .

It is particularly interesting to follow the evolution of entropy dur-
ing electron-positron annihilation. Intuitively, entropy conservation implies
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that when electrons and positrons annihilate each other, their entropy has
to be mediated to other species, namely: photons, which are the only re-
maining relativistic species in the plasma. In other words, the reaction
e− + e+ −→ generates an excess of photons; since photons are in ther-
mal equilibrium, any excess in the number density must be described in
terms of an increase in the product (Ta). Let us check this explicitly. Be-
fore positron annihilation, the expression of entropy is given by Eq. (3.40).
After annihilation, it reads:

s =
ρ+ p

T

∣

∣

∣

∣

plasma

+
ρν + pν
Tν

∣

∣

∣

∣

neutrinos

(3.41)

=
4

3

π2

30
(2)T 3 +

4

3

π2

30

(

7

8
× 6

)

T 3
ν . (3.42)

Note that the total entropy in a comoving volume sa3 is conserved, but
the separate entropy of neutrinos is also conserved since they are decoupled
and (Tνa) is exactly constant. This implies that splasmaa

3 is also conserved
separately. Hence:

11

2
(Ta)3before = 2(Ta)3after . (3.43)

We conclude that the temperature of the plasma does not scale like a−1

during electron positron annihilation: this is a typical example in which it

is rescaled according to g
−1/3
∗ . In fact, Ta increases in order to compensate

the loss of the electron and positron degrees of freedom. But the most
interesting outcome of this is that the temperature of photons and neutrinos
after annihilation differs by:

(Tνa)after
(Ta)after

=
(Tνa)before

(11/4)1/3(Ta)before
=

(

4

11

)1/3

. (3.44)

After positron annihilation, the photons are the only remaining species in
thermal equilibrium, hence g∗ = 2 and (Ta) is exactly constant. Finally,
we will see that photons decouple around T ∼ 0.3 eV. Like for neutrinos,
the distribution of photons remains frozen after decoupling, with T (t) =
T (tD)a(tD)/a(t) until today. We conclude that between T ∼ 0.5 MeV and
today, the relation Tν = (4/11)1/3T holds at any time, with the photon
temperature given by T = T0(a0/a). Here, T0 is the CMB temperature
measured today, T0 = 2.726K. So Tν0 = 1.946K. Knowing the photon and
neutrino temperature today, we can infer their number density:

n0
γ =

ζ(3)

π2
× 2 T 3

0 = 137 cm−3 , (3.45)

n0
ν =

ζ(3)

π2
× 3

4
× 6× 4

11
T 3
0 = 112 cm−3 . (3.46)

(the second number being the total density summed over the six neutrinos).

3.3.5 nucleosynthesis

A nucleus X containing Z protons can have various isotopes AX of mass
number A (hence containing A−Z neutrons). The following reactions can
increase Z by one unit, starting from a simple proton (i.e. ionized hydrogen
nucleus H+ = p; in the following we will omit to write the charge of the
various ions):

p+ n −→ D + γ (3.47)
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Figure 3.2: Average binding energy per nucleon B/A as a function of A.

D +D −→ 3He+ n (3.48)
3He+D −→ 4He+ p (3.49)

... (3.50)

In order to know whether these reactions are favored or not from the point
of view of energetics, we should know the binding energy B of each element.
We recall that the binding energy is the minimal amount of energy which
must be furnished in order to break a nucleus X in Z protons and A − Z
neutrons. Hence the rest energy of X reads:

E0(X) = mX = Zmp + (A− Z)mn −B . (3.51)

For instance, the binding energy of deuterium is BD = 2.22 MeV, since
mp = 938.27 MeV, mn = 939.57 MeV, mp + mn = 1877.84 MeV and
mD = 1875.62 MeV. Hence, from a purely energetic point of view, protons
and neutrons should combine and form the isotope with the largest possible
binding energy per nucleon B/A: once this isotope exists, any nuclear
reaction destroying it would cost energy. Figure 3.2 shows the average
binding energy per nucleon B/A as a function of A. Starting from zero
for hydrogen 1H (p), the curve raises for deuterium 2H (pn), helium 3He
(ppn), tritium 3H (pnn), and reaches a local maximum for 4He (ppnn).
The first isotope with a ratio B/A larger than that of 4He is 12C. The
global maximum is reached at A = 56 for iron 56Fe.

Preliminary overview of nucleosynthesis. From a purely energetic point
of view, we could expect the following picture. The reaction

D + γ −→ p+ n (3.52)

requires an energy of at least BD = 2.22 MeV. For T > BD, photons
carry enough energy for breaking any deuterium nucleus into pairs p + n.
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Hence, protons and neutrons can be significantly converted into deuterium
only when the temperature drops below BD. Once deuterium forms, it is
energetically more favorable to convert it in 3He, and so on and so on, until
the universe contains only heavy elements like iron.

In the above reasoning, we forgot that the kinetic of the various reac-
tions involved does not depend only on initial and final energies, but also
on number densities and cross sections. In fact, the previous reasoning is
more or less correct in the frame of the Cold Big Bang scenario, which was
rejected on this basis: far from stars, the real universe seems dominated
by hydrogen rather than heavy elements. In the Hot Big Bang scenario,
a key feature is that baryons are considerably suppressed with respect to
photons, nB ∼ 10−10nγ . So, our argument that when T < BD the reaction
(3.52) cannot occur is wrong. There are so many photons that even if the
average photon energy is much less than TD, but a tiny fraction of them (of
order 10−10) have a momentum larger than BD (which is possible if they
are in the high-momentum tail of the Fermi-Dirac distribution), then the
reaction is still very efficient. So, in the Hot Big Bang scenario, neutrons
and protons start forming deuterium at a significantly smaller temperature
than BD. The formation of heavier elements is also suppressed by con-
sideration on number densities. Once deuterium is formed, most of it is
efficiently converted into 4He as could be expected from energetics, but
then the gap between 4He and 12C is very difficult to cross: it requires a
three-body reaction 3 × 4He −→ 12C. When 4He forms, the temperature
is far too low for the scattering rate of the above reaction to be comparable
with H . Hence the chain will stop at 4He. Let us now check these qualita-
tive expectations using our knowledge of thermal and chemical equilibrium.
The discussion can be carried in two steps.

Formation of Deuterium. We first study the reaction of deuterium for-
mation:

n+ p←→ D + γ . (3.53)

The cross-section of this reaction is large enough for ensuring chemical
equilibrium in the temperature range considered here. Hence µD = µn+µp.
At T ≪ GeV, neutrons, protons and deuterium are all non-relativistic with
densities given by Eq. (3.10). Hence

nD

npnn
= exp

(

µD − µp − µn

T

)

3

4

(

2πmD

mpmnT

)3/2

exp

(

mp +mn −mD

T

)

,

(3.54)
where we used the number of spin states: g = 2 for p and n, g = 3
for deuterium. The argument of the first exponential cancels because of
chemical equilibrium. The argument of the second one involves the binding
energy BD of deuterium:

nD

npnn
=

3

4

(

2πmD

mpmnT

)3/2

exp

(

BD

T

)

. (3.55)

We will now use this equation for getting a rough estimate of the order of
magnitude of the deuterium density to baryon number density ratio. We
know that roughly, np ∼ nn ∼ nB ∼ 10−10nγ ∼ 10−10T 3. Hence we obtain

nD

nB
∼ 10−10

(

T

mp

)3/2

exp

(

BD

T

)

∼ 10−10

(

T

0.94 GeV

)3/2

exp

(

2.22 MeV

T

)

. (3.56)
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As long as T > BD, it is clear that the ratio remains tiny. As expected,
there is no significant deuterium abundance above that scale; all baryons are
in the form of neutrons and protons. The first terms can be compensated
only if the argument of the exponential is large enough. A quick estimate
shows that for T ∼ 0.06 MeV, the above ratio reaches the order of one.
A more careful estimate shows that the deuterium abundance becomes
sizable around 0.07 MeV. We will retain 0.07 MeV as the temperature of
nucleosynthesis.

Once deuterium forms, one can show that it is efficiently converted to
3He and 4He, since the scattering rate of the relevant reactions exceeds the
Hubble rate, and 4He is the most stable configuration. However, at T ∼
0.07 MeV, the scattering rate of the three-body reaction 3× 4He −→ 12C is
considerably suppressed and the chain stops. We conclude that below T ∼
0.07 MeV, nucleons combine into 4He, which is formed of two protons and
two neutrons. However, protons and neutrons are not necessarily in exactly
equal proportions before this temperature is reached. Hence, together with
4He, there might be a relic density of protons or neutron. We see that it
is crucial to compute the neutron over proton ratio for T ≥ 0.07 MeV.

Neutron versus proton density above T ∼ 0.07 MeV. The balance be-
tween neutrons and protons depends essentially on the reaction:

p+ e− ←→ n+ νe . (3.57)

At high energy (T > MeV), this reaction is in chemical equilibrium, with
µp +µe = µn +µνe . The chemical potential of neutrinos is zero in the sim-
plest cosmological model considered in this course. The one of electrons is
non-zero, but before electron-positron annihilation the asymmetry between
electrons and positrons is so small (µe/T ∼ 10−10) that we can work in the
approximation µe ≃ 0. Hence:

1 = exp

(

µp + µe − µn − µνe

T

)

≃ exp

(

µp − µn

T

)

=
np

nn

(

mn

mp

)3/2

exp

(

mp −mn

T

)

. (3.58)

(for the last equality, we used Eq. (3.10) for the number density of non-
relativistic species). The difference between the neutron and proton mass
is Q ≡ mn − mp = 1.203 MeV. Hence, for T ≫ 1 MeV, the neutron to
proton ratio is given by:

nn

np

∣

∣

∣

∣

T≫1 MeV

= (mn/mp)
3/2 = 1.002 , (3.59)

i.e. the density of neutrons and protons is essentially the same. When
T ∼ 1 MeV, chemical equilibrium would force the neutron to proton ratio
to drop exponentially like exp(−Q/T ). If this was true, at 0.07 MeV there
would be essentially no neutron left, and nucleosynthesis would not happen:
the primordial universe would contain only hydrogen.

However, the above reaction is mediated by weak interactions. Hence,
it becomes quite weak around T ∼MeV, and we are forced to consider its
departure from chemical equilibrium. In fact we will see that the reaction
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freezes out with a significant leftover of neutrons. The neutron density
obeys to the Boltzmann equation:

ṅn + 3Hnn = nn[nνe〈σv〉]
{

exp

(

µe + µp − µn − µνe

T

)

− 1

}

. (3.60)

The term between brackets is the scattering rate Γnp for neutron to proton
conversion, and the exponential can be approximated using Eq. (3.58).
Hence

ṅn + 3Hnn = nnΓnp

{

np

nn

(

mn

mp

)3/2

e−Q/T − 1

}

. (3.61)

This equation can be written in terms of a dimensionless variable, the
neutron fraction Xn = nn/(nn + np). We have

nn = Xn(nn + np) = XnnB, np = (1−Xn)nB . (3.62)

The conservation of the baryon number implies nB ∝ a−3, so

ṅn = ẊnnB − 3HXnnB . (3.63)

Replacing nn and np in Eq. (3.61) and dividing by nB, we get

Ẋn = Γnp

[

(1−Xn) e
−Q/T −Xn

]

. (3.64)

The dependence of Γnp with respect to T can be computed using nuclear
physics. Still, in order to integrate the equation, we need to know the
relation between time t and temperature T . This relation can be inferred
from the Friedmann equation. In first approximation, T ∝ a−1 (neglecting
the effect of the electron-positron annihilation on Ta) and dT/T = −da/a.
So,

dT

dt
= −T da

a dt
= −TH (3.65)

= −
√

8πG

3
ρT 2 (3.66)

= −
√

8π3G

90
g∗T 6 (3.67)

with g∗ = 10.75 before electron-positron annihilation. Hence the reaction
reads

dXn

dT
= −

√

90

8π3g∗

MP

T 3
Γnp(T )

[

(1 −Xn)e
−Q/T −Xn

]

. (3.68)

Knowing Γnp(T ), this equation can be integrated. The result is that around
T ∼ 0.1 MeV, Xn gets close to an asymptotic value of 0.15, corresponding
to the freeze-out of the neutron to proton ratio.

Equation (3.68) is just a first-order approximation. The precise cal-
culation includes two additional effects: the change in g∗ and Ta due
to the electron-positron annihilation, and the neutron beta-decay (n −→
p+ e− + ν̄e) which should be included in the right-hand side of the Boltz-
mann equation since it represents another decay channel. Altogether, these
effects lead to a slightly different neutron to proton ratio at freeze-out,
Xn(T < 0.1 MeV) ∼ 0.11. Hence, at T ∼ 0.07 MeV, nn = 0.11nB and
np = 0.89nB. At T ∼ 0.07eV, all available neutrons will combine into
deuterium, 3He and finally 4He nuclei, together with the same number of
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protons. The final 4He density should be n4He = 0.055nB, with a leftover
of nH = 0.78nB protons. The helium fraction, usually defined as:

YP ≡
4n4He

nB
, (3.69)

is predicted to be 0.22 at any time after nucleosynthesis, in every region
of the universe not affected by the ejection of particles from stars (since
inside stars, nuclear reactions can form other elements in very different
proportions).

Exact results from a full calculation. The above calculation was rather
simplistic. A full simulations of nucleosynthesis can be performed using
numerical codes (a few nucleosynthesis codes are even publicly available).
Instead of studying the kinetics of just two reactions, these codes follow
of the order of one hundred possible reactions between neutrons, protons
and heavier nuclei (typically, till 12C). The main differences between the
outcome of a full simulation and the results of the above section are:

• when reactions freeze-out, the density ni of other elements than 4He
is nonzero - but still very small: the number density of D and 3He
is smaller than that of 4He by a factor ∼ 105, the density of 7Li is
smaller by ∼ 109, and all other species are even more suppressed.

• the final helium fraction depends slightly on the free parameter of
this problem, namely ηb ∼ 10−10, which controls mainly the tem-
perature at which deuterium starts forming (see Eq. (3.56)). Hence
the neutron-to-proton ratio at the beginning of deuterium formation
depends on ηb, as well as the final helium abundance. However the
dependence is only logarithmic. Precise simulations yield

YP = 0.2262 + 0.0135 ln(ηb/10
−10) . (3.70)

This result is in very good agreement with the approximate calcula-
tion presented before.

3.3.6 Recombination

After nucleosynthesis, the universe contains a thermal plasma composed es-
sentially of relativistic photons and non-relativistic electrons, hydrogen nu-
clei and helium nuclei; plus decoupled relativistic neutrinos. At T ≪ MeV,
weak interactions are inefficient, but electromagnetic interactions ensure
equilibrium between electrons, nuclei and photons. More precisely, pho-
tons remain tightly coupled to electrons via Compton scattering (e−+γ −→
e− + γ) and electrons to nuclei via Coulomb scattering (e− + p −→ e− + p
or e−+ 4He −→ e−+ 4He). These interactions are efficient at least as long
as hydrogen and helium remain ionized.

The goal of this section is precisely to establish until which time hy-
drogen remains ionized (a time called recombination). For simplicity, we
will not consider helium recombination, and even neglect completely the
presence of helium (although in reality ∼ 22% of nucleons are inside 4He
nuclei). The formation of neutral hydrogen depends on the reaction:

e− + p←→ H + γ . (3.71)

Like for nucleosynthesis, let us start from purely energetic considerations.
The binding energy of hydrogen, defined through:

mH = mp +me − ǫ0 , (3.72)
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is equal to ǫ0 = 13.6 eV. Hence we expect that for T ≫ 13.6 eV hydrogen is
fully ionized: any neutral hydrogen atom would immediately interact with
an energetic photon and get ionized. This does not mean that neutral hy-
drogen forms immediately below T ∼ 13.6 eV. Just like for the formation
of deuterium during nucleosynthesis, the balance of the above reaction de-
pends on relative abundances. We know that the density of electrons and
protons is 1010 smaller than that of photons. So, much below T ∼ 13.6 eV,
there should still be enough energetic photons for preventing recombina-
tion. This can be checked assuming (as a first step) chemical equilibrium
for the above reaction:

µe− + µp = µH . (3.73)

Now, let us write the ratio of densities, using Eq. (3.10) with g = 2 for e−

and p, and g = 4 for H :

nenp

nH
= exp

(

µe + µp − µH

T

)(

mempT

mH2π

)3/2

exp

(−me −mp +mH

T

)

.

(3.74)
Using the chemical equilibrium relation (3.73) and approximating the ratio
mp/mH by one, we get

nenp

nH
=

(

meT

2π

)3/2

e−ǫ0/T . (3.75)

Since in this section we decided to neglect the presence of helium, electric
neutrality ensures that ne = np. Hence the free electron fraction is equal
to the hydrogen ionization fraction:

Xe ≡
ne

ne + nH
=

np

np + nH
. (3.76)

Replacing ne, np and nH in Eq. (3.75), we get:

X2
e

1−Xe
=

1

ne + nH

(

meT

2π

)3/2

e−ǫ0/T . (3.77)

This equation (based on the assumption of chemical equilibrium) is called
the Saha equation. Since we neglect helium, the sum ne + nH = np + nH

is equal to the baryon number density, nB ∼ 10−10nγ ∼ 10−10T 3. Hence:

X2
e

1−Xe
∼ 1010

(me

T

)3/2

e−ǫ0/T ∼ 1010
(

0.5 MeV

T

)3/2

e−13.6 eV/T .

(3.78)
So, for T ∼ 13.6 eV, one has X2

e/(1 − Xe) ∼ 1017 and hence Xe ≃ 1:
hydrogen is still fully ionized. It is only for T ≪ 13.6 eV that the ex-
ponential can compensate the first factors in such way that Xe drops be-
low one. An estimate shows that ionization can take place only below
T ∼ 0.25 eV. Let us translate this in terms of redshift. We know that
T0 = 2.726 K = 2.726× 8.617× 10−5 eV in our kB = c = h̄ = 1 units. The
temperature scales like a−1, i.e. like (1 + z). Hence recombination takes
place around:

zrec ∼
0.25

2.726× 8.617× 10−5
− 1 ∼ 1100 . (3.79)

The Saha equation (3.75) is successful in predicting roughly the tempera-
ture at which recombination takes place, but it does not provide an accurate
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description of the evolution of the ionization fractionXe. Indeed, in the real
universe, chemical equilibrium cannot be maintained throughout recombi-
nation between the four species e, p, H and γ. Hence we must employ the
Boltzmann equation in order to follow the kinetics of recombination.

The exact description of recombination is considerably complicated by
the fact that hydrogen can form in various excited states, and then relax
to its fundamental state while emitting photons: so, there are many states
and reactions to follow. In this course, we neglect these issues and do as
if there was a unique hydrogen state, forming through e− + p −→ H + γ.
Considering only this reaction, the Boltzmann equation for the free electron
density reads:

ṅe + 3Hne = nenp〈σv〉
{

exp

(

µH − µe − µp

T

)

− 1

}

. (3.80)

Using Eq. (3.74) and replacing ne = np and nH in terms of Xe = ne/(ne +
nH) = ne/nB, we get:

Ẋe = 〈σv〉
[

(1−Xe)

(

meT

2π

)3/2

e−ǫ0/T −X2
enB

]

. (3.81)

The cross section and baryon number density can be computed as a function
of temperature. The derivative with respect to t on the left-hand side can
be replace by a derivative with respect to T using:

dT

dt
= −TH = −

√

8πG

3
ρT 2 . (3.82)

In the total density ρ, one should sum over both relativistic and non-
relativistic components (ρ = ρR + ρM ), because recombination takes place
close to the time of equality between matter and radiation. To see this, let
us admit that the non-relativistic matter fraction today is of the order of
Ωm ∼ 0.25, as will be shown in the chapter on cosmological observations.
Hence, the scale factor at equality obtains from equating the relativistic
density:

ρR =
π2

30
g∗T

4 =
π2

30
g∗T

4
0 (a0/a)

4 (3.83)

(with g∗ = 2 + 7
8 × 6 ×

(

4
11

)4/3
for photons and neutrinos) with the non-

relativistic density

ρM = ΩMρ
0
c(a0/a)

3 = ΩMρ
0
c(T/T0)

3 = ΩM
3H2

0

8πG
(a0/a)

3 . (3.84)

So the scale factor at equality is given by

aeq
a0

=
π2

30
g∗T

4
0

8π

3M2
PH

2
0

Ω−1
M . (3.85)

For h = 0.7 and ΩM = 0.25 this gives aeq = 3.3× 10−4 and zeq = 3000. So,
recombination takes place slightly after matter-radiation equality.

With all these consideration, equation (3.81) can in principle be inte-
grated numerically with respect to T . After doing so, one would find that
the ionization fraction Xe becomes significantly smaller than one around
z ∼ 1400, crosses Xe ∼ 0.1 around z ∼ 1000, and tends to an asymptotic
freeze-out value of order Xe → 5 ∼ 10−4 for z < 100.
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3.3.7 Photon decoupling

Till the time of recombination, photons are maintained in thermal equilib-
rium mainly through Compton scattering off electrons:

γ + e− −→ γ + e− . (3.86)

The cross section 〈σv〉 of the above reaction is the Thomson cross section,
equal to 〈σv〉T = 0.665 × 10−24cm2. Compton scattering of photons off
electrons becomes inefficient roughly when the scattering rate Γ = ne〈σv〉T
equals the Hubble parameter. In order to evaluate this characteristic time,
we can write ne = np = XenB (like in the previous section, we neglect
helium) and nB ∼ ρb/mp. We obtain:

Γ

H
= 0.07(a0/a)

3XeΩbh
H0

H
. (3.87)

The Hubble rate in units of Hubble rate today can be estimated to be

H/H0 = Ω
1/2
M (a0/a)

3/2 during matter domination. Taking a to be of the
order of adec, Ωb ≃ 0.4, ΩM ≃ 0.25 and h ≃ 0.7, we see that photon
decoupling occurs when Xe drops below ∼ 10−2 during recombination.
Hence, recombination directly triggers photon decoupling. This is in fact
the main reason for which recombination is important to study: it controls
the decoupling of the CMB photon that we observe today. The details of
recombination affect CMB anisotropies patterns. However, the temperature
evolution of photons is completely unaffected by their decoupling, exactly
like for neutrinos. When photons decouple, their relativistic Bose-Einstein
distribution freezes-out, and only evolves at later times due to the universe
expansion, which induces p ∝ a−1 and hence T ∝ a−1.

A precise calculation shows that photon decoupling arises mainly around
a redshift zdec = 1100. Translating in terms of proper time, one finds
photons decouple approximately 380,000 years after the initial singularity.

3.3.8 Very recent stages

From the point of view of the thermal history of the universe, very few
phenomena occur after photon decoupling. Each neutrino family i becomes
non-relativistic when Tν < mi, but since they are already decoupled, this
has no effect on the temperature and number density evolution (Tν ∝ a−1

and nν ∝ a−3). Only the density and pressure of neutrinos are affected
by the non-relativistic transition. The consequences of this transition on
structure formation are not discussed in this course (they shall be explained
next semester by Pierre Salati).

There is however another important phenomenon occurring at low red-
shift, than we just mention here briefly. When the first stars form, they emit
a new population of photons which partially reionize hydrogen and heav-
ier elements. However, this reionization is not sufficient for “re-coupling”
photons to electrons and ionized matter: only a small fraction of CMB
photons have a chance to experience Compton scattering between the time
of decoupling and today.

In figure 3.3, we summarize qualitatively the main results of this section.
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Figure 3.3: As a summary of Chapter 3, we show the qualitative evolution
of ni for each species, normalized in terms of nγ .



60 CHAPTER 3. THE HOT BIG BANG COSMOLOGICAL MODEL



Chapter 4

Dark Matter

We have many reasons to believe that in the recent universe, the non-
relativistic matter is of two kinds: ordinary matter, and dark matter. One
of the well-known evidences for dark matter arises from galaxy rotation
curves.

Inside galaxies, the stars orbit around the center. If we can measure
the redshift in different points inside a given galaxy, we can reconstruct
the distribution of velocity v(r) as a function of the distance r to the cen-
ter. It is also possible to measure the distribution of luminosity I(r) in
the same galaxy. What is not directly observable is the mass distribution
ρ(r). However, it is reasonable to assume that the mass distribution of
the observed luminous matter is proportional to the luminosity distribu-
tion: ρlum(r) = b I(r), where b is an unknown coefficient of proportionality
called the bias. From this, we can compute the gravitational potential Φlum

generated by the luminous matter, and the corresponding orbital velocity,
given by ordinary Newtonian mechanics:

ρlum(r) = b I(r), (4.1)

∆Φlum(r) = 4πG ρlum(r), (4.2)

v2lum(r) = r
∂

∂r
Φlum(r). (4.3)

So, vlum(r) is known up to an arbitrary normalization factor
√
b. How-

ever, for many galaxies, even by varying b, it is impossible to obtain a
rough agreement between v(r) and vlum(r) (see figure 2.3). The stars ro-
tate faster than expected at large radius. We conclude that there is some
non–luminous matter, which deepens the potential well of the galaxy.

A qualitatively similar argument applies to the dynamics of galaxies
within galaxy clusters. Actually, the hypothesis of dark matter was formu-
lated for the first time by Franz Zwicky in 1933, following the observation
of surprisingly large galaxy velocities inside the Coma galaxy cluster.

Apart from galactic rotation curves, there are many arguments – of
more cosmological nature – which imply the presence of a large amount
of non–luminous matter in the universe, called dark matter. For various
reasons (in particular, the distribution of CMB anisotropies, to be studied
in Chapter 5 and 6), it cannot consist in ordinary matter that would remain
invisible just because it is not lighten up. Dark matter has to be composed
of particle that are intrinsically uncoupled with photons – unlike ordinary
matter, made up of baryons. Within the standard model of particle physics,
a good candidate for non-baryonic dark matter would be a neutrino with a
small mass. Then, dark matter would become non-relativistic only recently,
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Figure 4.1: A sketchy view of the galaxy rotation curve issue. The genuine
orbital velocity of the stars is measured directly from the redshift. From
the luminosity distribution, we can reconstruct the orbital velocity under
the assumption that all the mass in the galaxy arises form of the observed
luminous matter. Even by varying the unknown normalization parameter
b, it is impossible to obtain an agreement between the two curves: their
shapes are different, with the reconstructed velocity decreasing faster with
r than the genuine velocity. So, there has to be some non–luminous matter
around, deepening the potential well of the galaxy.

and would still possess today large velocities, just a few orders of magnitude
smaller than the speed of light (this hypothesis is called Hot Dark Matter
or HDM). However, HDM is excluded by some types of observations: dark
matter particles have to be deep inside the non-relativistic regime, otherwise
galaxy could not form during matter domination. Strongly non–relativistic
dark matter is generally called Cold Dark Matter (CDM).

There are a few candidates for CDM in various extensions of the stan-
dard model of particle physics: for instance, some supersymmetric partners
of gauge bosons (like the neutralino or the gravitino), or the axion of the
Peccei-Quinn symmetry. Despite many efforts, these particles have never
been observed directly in the laboratory. This is not completely surpris-
ing, given that they are – by definition – very weakly coupled to ordinary
particles. However, there are still many efforts for direct detection of dark
matter particles in underground laboratories, and a discovery might occur
in the next years.

We will not discuss dark matter any further, since it will be the main
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topic of the course by Pierre Salati, next semester. In the following, we
will decompose ΩM in ΩB +ΩCDM. This introduces one more cosmological
parameter. With this last ingredient, we have described the main features of
the Standard Cosmological Model, at the level of homogeneous quantities.
We will now focus on the perturbations of this background.
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Chapter 5

Cosmological
perturbations

In all this chapter, we will study the evolution of cosmological perturbations
under the assumption that the universe is flat: this simplifies all equations
considerably.

5.1 Formalism

5.1.1 Definition of perturbations, gauge transforma-
tions

In our universe, the metric and the energy-momentum tensor are inhomo-
geneous. Their perturbations, given by

δgµν(x, t) = gµν(x, t)− ḡµν(t) , (5.1)

δTµν(x, t) = Tµν(x, t)− T̄µν(t) , (5.2)

are known to be small in the early universe, typically 105 times smaller than
the background quantities, as shown by CMB anisotropies. As we shall see
in this section, after photon decoupling, the matter perturbations grow
by gravitational collapse and reach the non-linear regime, starting with the
smallest scales. However, the linear perturbation theory is a good tool both
for describing the early universe at any scales, and the recent universe on
the largest scales. The most reliable observations in cosmology are those in-
volving mainly linear (or quasi-linear) perturbations. For instance, current
constraints on the spatial curvature, baryon and dark matter density based
on observations of CMB anisotropies involve only linear cosmological per-
turbations. Therefore, our goal in this section is to describe the evolution
of cosmological perturbations in the linear regime. The great advantage
of linear theory is, as usual, to obtain independent equations of evolution
for each Fourier mode. Note that the Fourier decomposition must be per-
formed with respect to the comoving coordinate system: so, the quantity
(2π/k) is the comoving wavelength of a perturbation of wavevector k, while
the physical wavelength is given by

λ(t) = a(t)
2π

k
, (5.3)

where a(t) is the scale factor. For each mode k, the amplitude of each
perturbation evolves under an equation of motion (which depends only
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on the modulus k, since the background is isotropic), and on top of this
evolution, the physical wavelength is stretched according to the universe
expansion.

The perturbations defined in Eqs. (5.1) contain many degrees of free-
dom: the homogeneity and isotropy of the background implies that ḡµν and
T̄µν are diagonal, but in general this is not true at the level of perturbations.
However, we will see that some of these degrees of freedom are just artifacts
of the relativistic perturbation theory set-up; moreover, only a fraction of
the physical degrees of freedom contribute to quantities which are actu-
ally observable in the cosmic microwave background (CMB) and large scale
structure (LSS) of the universe. Hence, the problem can be reduced to the
integration of a small number of linear equations of evolution.

In the real universe all physical quantities (densities, curvature...) are
functions of time and space. Thanks to the covariance of general relativity,
they can be described in principle in any coordinate system, without chang-
ing the physical predictions. The problem is that in order to obtain simple
equations of evolution, we wish to use a linear perturbation theory, in which
the true physical quantities are artificially decomposed into a homogeneous
background and some small perturbations. This is artificial because the
homogeneous quantities are defined as spatial averages over hypersurfaces
of simultaneity: f̄(t) = 〈f(t,x)〉x. Any change of coordinate system which:

1. mixes time and space (therefore, redefining hypersurfaces of simul-
taneity, and changing the way to perform spatial averages), and

2. remains small everywhere, so that the differences between true quan-
tities and spatial averages are still small perturbations,

gives a new set of perturbations (new equations of evolution, new initial
conditions), although the physical quantities (i.e., the total ones) are the
same. This ambiguity is called the gauge freedom in the context of rela-
tivistic perturbation theory.

Of course, using a linear perturbation theory is only possible when there
exists at least one system of coordinates in which the universe looks approx-
imately homogeneous. We know that this is the case at least until the time
of photon decoupling: in some reference frames, the CMB anisotropies do
appear as small perturbations. It is a necessary condition for using linear
theory to be in such a frame; however, this condition is vague and leaves
a lot of gauge freedom, i.e. many possible ways to slice the spacetime into
hypersurfaces of simultaneity.

We can also notice that the definition of hypersurfaces of simultane-
ity is not ambiguous at small distances, as long as different observers can
exchange light signals in order to synchronize their clocks. Intuitively,
the gauge freedom is an infrared problem, since on very large distances
(larger than the Hubble distance) the word “simultaneous” does not have
a clear meaning. The fact that the gauge ambiguity is only present on
large scales emerges naturally from the mathematical framework describ-
ing gauge transformations.

Formally, a gauge transformation is described by a quadrivector field
ǫµ(x, t). When the latter is infinitesimal, the Lorentz scalars, vectors and
tensors describing the perturbations are shifted by the Lie derivative along
ǫµ,

δAµν...(x, t)→ δAµν...(x, t) + Lǫµ [δAµν...(x, t)] . (5.4)

Since there are four degrees of freedom (d.o.f.) in this transformation - the
four components of ǫµ - we see that among the ten d.o.f. of the perturbed
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Einstein equation δGµν = 8πGδTµν , four represent gauge modes, and six
represent physical degrees of freedom.

Let us take now a very simplistic example in order to illustrate the gauge
ambiguity. We will do do as if the universe had a single spatial dimension,
and could be described entirely in terms of its metric gµν(x, t) and energy
density ρ(x, t) in an arbitrary coordinate system. Let’s take for instance:

ds2 = dt2 + 2ǫ cos(x)dxdt +
[

ǫ2 cos(2x)− 2ǫt sin(x) − t2
]

dx2 ,(5.5)

ρ = t+ ǫ sin(x) , (5.6)

where ǫ is a small parameter. By averaging over x, we see that this universe
can be decompose into a homogeneous background with

ḡµν(t) =

(

1 0
0 −a2

)

, a(t) ≡ t , (5.7)

ρ̄ = t , (5.8)

plus perturbations (which are indeed small as long as ǫ≪ t) with

δgµν(x, t) =

(

0 ǫ cos(x)
ǫ cos(x) ǫ2 cos(2x)− 2ǫt sin(x)

)

, (5.9)

δρ(x, t) = ǫ sin(x) . (5.10)

At first sight, this universe looks like a two-dimensional toy-model for the
FLRW universe, with small sinusoidal perturbations. However, lets us
change of coordinates system and use:

t′ = t+ ǫ sin(x) , (5.11)

x′ = x . (5.12)

In these new coordinates, this toy universe is simply described by

ds2 = dt′
2 − t′2dx′2 , (5.13)

ρ = t′ , (5.14)

and appears as perfectly homogeneous, with flat spatial curvature! In fact,
this universe is indeed intrinsically homogeneous for a set of comoving ob-
servers. The perturbations were introduced artificially by the previous
choice of coordinate system.

In general, a change coordinates allows to eliminate a few degrees of
freedom in the perturbations (at most four function, since the field ǫµ(x, t)
is four-dimensional), but not all degrees of freedom simultaneously. When
physical perturbations are present, they remain in any coordinate system,
but taking different forms: sometimes a curvature perturbation, sometimes
a density perturbation, sometimes both... The above example was con-
structed in a very special way, so that curvature and density perturbations
could be eliminated simultaneously, but this is not possible when there are
ten independent functions or more to eliminate!

5.1.2 Metric perturbations

Since δgµν is symmetric, it contains ten degrees of freedom (dof). Four of
them can always be eliminated by a gauge transformation, so the number
of physical degrees of freedom is only six. These degrees of freedom can
be decomposed into scalars, 3-vectors and 3 × 3−tensors with respect to
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ordinary spatial rotations. The advantage of this decomposition is that
it splits the linearized Einstein equations in three decoupled, independent
sectors. Also, gauge transformations do not mix these different sectors with
each other. In addition, these three sectors correspond to different physical
effects: the scalars describe the generalization of Newtonian gravity, and the
evolution of density perturbations; the vectors describe gravitomagnetism;
the tensors describe gravitational waves.

Let us study this decomposition in details. The perturbed (flat) FLRW
metric can be written as:

ds2 = (1 + 2φ)dt2 +Bidx
idt− a2(t) [(1− 2ψ)δij +Hij ] dx

idxj , (5.15)

where Hij is a traceless tensor (
∑

iHii = 0). The number of degrees of free-
dom in (φ,Bi, ψ,Hij) is 1+3+1+5=10. The 3-vectorBi can be decomposed
into “electric” and “magnetic” parts, called in this context “longitudinal”
and “transverse”:

~B = ~∇b+ ~∇×~b (5.16)

where ~b is a transverse 3-vector, obeying to ~∇~b = 0 and containing only
two independent degrees of freedom. This can also be written as

Bi = ∂ib+ ǫijk∂jbk (5.17)

where ǫijk is the maximally antisymmetric tensor. Similarly, the traceless
tensor Hij can be decomposed into three traceless parts:

Hij =

(

∂i∂j −
1

3
δij∇2

)

µ (5.18)

+ (∂iaj + ∂jai) with
∑

i

∂iai = 0 (5.19)

+ hij with
∑

i

∂ihij = 0 and
∑

i

hii = 0 . (5.20)

At the end of the day, we obtain four scalar degrees of freedom: (φ, ψ, b, µ),
two of which can be eliminated by gauge transformations; plus four vector
degrees of freedom inside (bi, ai), two of which can be eliminated by gauge
transformations; plus finally two tensor degrees of freedom inside hij , which
are completely gauge-invariant.

In cosmology, vector perturbations are usually neglected, since they
decay with the universe expansion. Gravitational waves might play a role,
but we will return to this issue when studying inflation in the last chapter.
In the rest of this section, we will only study scalar modes, which represent
the most relevant degrees of freedom and allow to study the evolution of
density perturbations, pressure perturbations, temperature perturbations,
etc.

It is possible to build some gauge-invariant combinations of the pertur-
bations, and to reduce the Einstein equation into a set of gauge-invariant
equations. This is not the most economic way to proceed: one can sim-
ply choose an arbitrary gauge-fixing condition, i.e., a prescription that will
limit the number of effective degrees of freedom to that of physical modes
only, and make all calculations inside this gauge. When the same problem is
studied in two different gauges, the solutions can look very different on large
wavelengths; for instance, the total energy density perturbation δρ(t, k) for
a given time and wavenumber can appear as growing in one gauge, and
constant in another gauge, although the two solutions describe the same
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universe. However, physical observables - like the matter density pertur-
bations probed by galaxy surveys or temperature/polarization anisotropies
probed by CMB experiments - are always limited to small scales, at most
of the order of the Hubble length. On those scales, the predictions arising
from different gauge choices always coincide with each other.

Throughout our discussion, we choose to work in the longitudinal gauge,
which is probably the most popular one for studying cosmological pertur-
bations. In this gauge, one requires that the non-diagonal metric pertur-
bations vanish. This eliminates two scalar degrees of freedom b and µ, and
the metric including scalar perturbations reads:

ds2 = (1 + 2φ)dt2 − a2(t)(1 − 2ψ)δijdx
idxj (5.21)

= a2(τ)[(1 + 2φ)dτ2 − (1− 2ψ)δijdx
idxj ] (5.22)

in terms of proper time t or conformal time τ . At sufficiently small distances
(smaller than the Hubble radius RH), the scalar sector of general relativity
can be approximated by Newtonian gravity. In this case, the above quantity
φ can be identified with the usual gravitational potential. So, this gauge is
also called the Newtonian gauge.

5.1.3 Energy-momentum tensor perturbations

The energy-momentum tensor of each species i also has four scalar degrees
of freedom, which can be identified in a similar way than for metric pertur-
bations. First,

δT 0
0 = δρ , (5.23)

where δρ is the energy density perturbation. Next, the energy flux δT 0
i has

one longitudinal degree of freedom usually defined as θ:

∑

i

∂iδT
0
i ≡ (ρ̄+ p̄)θ . (5.24)

The 3 × 3−tensor δT i
j contains two scalar degrees of freedom: one along

the diagonal, which is just the isotropic pressure perturbation δp; and one
built from the other components, which represents the scalar component
of the anisotropic pressure or anisotropic stress. This quantity is usually
defined in the following way:

δT i
j = −δp δij + T i

j

∣

∣

anisotropic
, (5.25)

with
∑

i,j

(

∂i∂j −
1

3
δij∇2

)

T i
j

∣

∣

anisotropic
≡ (ρ̄+ p̄)∇2σ , (5.26)

where σ represents the scalar anisotropic pressure (or anisotropic stress).
Note that the scalar components of the energy-momentum tensor are not
gauge-invariant (apart from σ): if one defines the above quantities in two
different gauges, then for instance the two different δρ’s would be related
through a non-trivial equation.

For a perfect fluid, one can show that σ vanishes at first order in pertur-
bations: a perfect fluid has an isotropic pressure in very good approxima-
tion (this statement can be proved by taking the expression of the energy-
momentum tensor for a perfect fluid, T µ

ν = −pgµν+(ρ+p)Uµ
ν , and expanding

it at first order in perturbations).
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5.1.4 Equations of motion

Einstein equations

We can now write the linearized Einstein equations δGµν = 8πGδTµν :

• for scalar perturbations only,

• in the longitudinal/Newtonian gauge,

• using conformal time: here and in the rest of this chapter, the dot
denotes a derivative with respect to conformal time τ .

The four equations:

−3
(

ȧ

a

)2

φ− 3
ȧ

a
ψ̇ +∆ψ = 4πG a2 δρ ,

∆

(

ȧ
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ȧ

a

)2
)

φ+
ȧ
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∆(φ− ψ) = 4πG a2 δp ,

∆(ψ − φ) = 12πG a2 (ρ̄+ p̄) σ ,

can easily be derived after computing the Christoffel symbols for the per-
turbed metric of Eq. (5.22), keeping only linear terms in φ and ψ (i.e. only
first-order perturbations). The terms on the right-hand side are the total
density, pressure, energy flux and anisotropic pressure perturbations, ob-
tained by summing over the δT µ

ν ’s of all species. In Fourier space, these
equations become:
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ȧ

a
φ+ ψ̇

)

= 4πG a2 (ρ̄+ p̄) θ ,

(

2
ä
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(φ− ψ) = 4πG a2 δp ,

k2(φ− ψ) = 12πG a2 (ρ̄+ p̄) σ ,

Note that whenever σ vanishes, the last equation imposes φ = ψ. In fact,
we can use this approximation for the simplified calculations of this course.
Indeed, perfect fluids cannot contribute to σ, as we just saw. Before re-
combination, the thermal plasma made of photons, baryons and electrons
forms a perfect fluid, while cold dark matter is strongly non-relativistic and
hence pressureless with δp = σ = 0. So, only neutrinos can contribute to
σ. After recombination, we are deep inside the matter dominated regime,
and the perturbations of the subdominant relativistic species (photons and
neutrinos) are irrelevant; cold dark matter and baryons (now in the form of
atoms) are both strongly non-relativistic and pressureless with δp = σ = 0.
In conclusion, the only reason for a non-negligible σ term is the presence of
neutrinos during radiation domination. This is only a small effect. In this
course, for simplicity, we will neglect the anisotropic pressure perturbation
of neutrinos, and work in the σ = 0 approximation. Hence the two metric
perturbations are equal to each other, and the Einstein equations reduce
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to:
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φ̇− k2φ = 4πG a2 δρ , (5.27)
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φ̇+ φ̈ = 4πG a2 δp . (5.29)

Equations of motion for each fluid

The Einstein equations provide the relation between geometry and matter,
i.e. between metric and density/pressure perturbations. Since Einstein
equations imply Bianchi identities DµT

µ
ν = 0, equations (5.27-5.29) lead to

two equations of motion: the conservation of the total density perturbation,
and the Euler equation for the time-derivative of the total energy flux.
However, if the different species “s” are isolated from each other (non-
interacting), there is an independent set of conservation equations for each
of them. The relation DµT(s)

µ
0
= 0 corresponds to the energy conservation

or continuity equation for each species:

δ̇s = (1 + w)(θs + 3ψ̇) , (5.30)

where we defined the relative density perturbation

δs ≡
δρs
ρ̄s

. (5.31)

Here we also assumed that the species “s” has a linear equation of state
ps/ρs = w, with ẇ = 0. This will be the case for all species at the level of
this course. This equation of state holds both at the level of the background
and of perturbation. So, p̄s/ρ̄s = w, and the sound speed in the fluid “s”,
defined as usual through c2s ≡ δps/δρs, is equal to w. Next, the relation
DµT(s)

µ
i
= 0 implies one scalar equation for each species (called the Euler

equation like in usual fluid mechanics):

θ̇s ≡
ȧ

a
(3w − 1)θs − k2φ− k2σs −

w

1 + w
k2δs . (5.32)

For perfect fluids or non-relativistic matter, σs vanishes and the fluid is de-
scribed by two independent variables δs and θs (since δps = wδρs = wρ̄sδs).
Then, the continuity and Euler equations are sufficient for computing the
evolution of the fluid for known φ (but φ can be derived from one of the Ein-
stein equations). Hence the full system of differential equations is closed.
For imperfect fluids or free-streaming species like decoupled neutrinos, or
like photons around and after recombination, things are much more compli-
cated (the equation of motion is then the perturbed Boltzmann equation),
but in this course we will use various simplifications and avoid these very
technical aspects.

Newtonian limit

We know that the Newtonian theory of gravitation should be recovered on
distances smaller than the Hubble radius RH . A given Fourier mode is as-
sociated with a comoving wavelength 2π/k and with a physical wavelength:

λ(t) = a(t)
2π

k
. (5.33)
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Since RH = 1/H , the condition for a wavelength to be much smaller than
the Hubble radius reads:

k≫ 2π aH . (5.34)

This condition is usually written without the (2π) factor, since only orders
of magnitudes are important here. When conformal time is employed, H =
da/(adt) = da/(a2dτ). So, the condition becomes:

k ≫ 2π
ȧ

a
(5.35)

with ȧ ≡ da/dτ . We see immediately that when this inequality is satisfied,
the left-hand side in the first Einstein equation (5.27) is dominated by the
term involving k2:

−k2φ = 4πG a2 δρ . (5.36)

Going back to real space (−k2 −→ ∆), this gives:

∆φ

a2
= 4πG δρ . (5.37)

Here, ∆ is the comoving Laplacian. Since it has the dimension of x−2, the
physical Laplacian is ∆/a2 and the above equation is just the usual Poisson
equation of Newtonian gravity: the Laplacian of the gravitational field is
equal to the density times 4πG. However, we see that in the context of
cosmology, the gravitational potential is not sourced by the total density,
but by the density perturbations with respect to the homogeneous FLRW
background. Note also that in the above equation, δρ is the perturbed
energy density, while the Newtonian Poisson equation involves the mass
density. However, for non-relativistic matter, the mass and energy density
are equal to each other in our c = 1 units.

5.2 General principles

5.2.1 A stochastic theory

It is important to understand that the theory of cosmological perturbations
is a stochastic theory, i.e. a theory for the evolution of random quantities.
Our purpose is not to predict the value of each perturbation in each point,
and what is the exact position of each galaxy around us. The goal is only
to understand the statistical properties of the fluctuations at each given
time, the way in which typical objects can form, and how these statistical
properties are related to a physical model describing the global properties
of the universe.

Hence, the theory of cosmological perturbations differs, for instance,
from usual fluid mechanics by the fact that the state of the universe at a
given time is not described by a definite spatial distribution of various func-
tions, but by the statistical properties of these distributions. In a homoge-
neous universe, the statistical properties of the spatial distributions should
be invariant by translation: hence, it is convenient to go to Fourier space
and to discuss the statistical properties of the Fourier modes. For instance,
these properties can be formulated as the two-point correlation function,
three-point correlation function and higher momenta of the Fourier modes.

Let us consider a variable δ(x, τ) (standing e.g. for the relative density
perturbation δρ/ρ̄ of a given component). Since δ(x, τ) is real, it can be
expanded in (comoving) Fourier modes δ(k, τ) which are complex numbers,
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but with a symmetry δ(k, t)∗ = δ(−k, τ). As long as the theory is linear,
different modes k 6= k′ obey to independent equations of motions.

Let us now view δ(x, τ) or δ(k, τ) as a stochastic field, characterized by
statistical properties. A simple case is that of Gaussian isotropic fluctua-
tions. In that case, at any time, each Fourier mode δ(k, τ) is statistically
independent from other modes, obeys to a Gaussian probability distribu-
tion, and has a variance depending on the modulus k but not on the di-
rection k/k (this follows from the isotropy of the background). Hence, the
properties of δ(k, τ) at a given time τ are entirely described by the vari-
ance σ(k, τ). The square of this variance is called the power spectrum,
P (k, τ) = σ(k, τ)2:

〈δ(k, τ)δ(k, τ)∗〉 = P (k, τ) (5.38)

where the average holds over all possible realization of the stochastic num-
ber δ(k, τ).

The fact that the perturbations fulfill this set of properties at any time
(i.e., the fact that they keep being Gaussian and isotropic) is compatible
with the equations of motion of the system: the equations are linear, so each
mode k remains independent of the others; the coefficient which appear in
the equations only depend on the modulus k, no k-dependence can be
induced in the probability distribution; and finally, the linearity of the
equations of motion imply that the shape of the probability distribution
of each mode (in our case, a Gaussian) is preserved: only the variance
can increase with time. In order to see this better, let us recall that for a
homogeneous second-order differential equation, the general solution can be
written in terms of two initial conditions – typically, one initial amplitude
and one initial time-derivative:

δ(k, τ) = δ(k, τi)T (k, τ) + δ̇(k, τi)S(k, τ) (5.39)

where τi is the initial time and {T (k, τ), S(k, τ)} are two independent so-
lutions of the equation of motion normalized to T (k, τi) = 1, S(k, τi) = 0.
The solution of the equations of evolution describing cosmological perturba-
tions are of this type (here, we simplified everything by considering a single
variable and a single equation of motion; in reality, when the universe con-
tains N fluids, the evolution can be described by N variables obeying to a
system of N coupled, linear equations of motion). Note that T and S only
depend on the wavenumber k: this is a consequence of the isotropy of the
background, i.e. of the fact that the equations of motion only depend on
the wavenumber, not on the wave-vector.

Next, let us assume that the initial state is such that δ̇(k, τi) = 0, so
that the solution for each mode can be written as

δ(k, τ) = δ(k, τi)T (k, τ) . (5.40)

Typically, such a simplification will arise in the realistic cases described
later (the reader will see later that we can always neglect one of the two
independent solutions, called a “decaying mode”). We end up with a simple
linear relation between the Fourier modes at initial time and at a later time.
The evolution is given by a multiplicative factor T (k, τ) called the transfer
function.

If we now think of δ(k, τ) as a stochastic number, it is clear that the
linear relation (5.40) preserves the shape of the probability distribution. In
particular, if the initial state is Gaussian-distributed, this remains true for
δ(k, τ) at any time. However the variance evolves according to the square
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of the transfer function. The power spectrum at some final time is given
by:

〈|δ(k, τf )|2〉 = 〈|δ(k, τi)|2〉T 2(k, τf ) (5.41)

Hence, it is sufficient to compute the properly normalized solutions of the
equation of motion T (k, τ) for expressing the power spectrum at an ar-
bitrary time τf in function of the primordial spectra 〈|δ(k, τi)|2〉 at some
initial time τi. In summary, if the universe contains Gaussian isotropic
perturbations, we can entirely describe these perturbations if we know:

1. the primordial power spectrum for each variable: these spectra should
be formulated as starting assumptions, or given by some theory for
the generation of primordial perturbation in the early universe (the
theory of inflation discussed in the last chapter of this course is the
most favored theory of this type, and it predicts indeed Gaussian
perturbations with a particular, calculable primordial spectrum).

2. the transfer function T (k, τ) for each variable. These functions can be
obtained by integrating the equations of motion. They tell us which
modes grow or decay, at which time, at which rate, etc. They allow us
to compute the primordial spectrum of a given quantity at any time,
by taking the product of the primordial spectrum with the square of
the transfer function.

On could make an analogy with quantum field theory. For a free field
(with quadratic potential), the classical equations of motion are linear and
Fourier modes are independent from each other. The initial state is de-
scribed by a wave functional (a wave-function for each Fourier mode), and
the time evolution starting from a given initial state is given by the Hamil-
tonian, i.e. by the solutions of the classical equation of motion. Here, we
are dealing with a classical stochastic theory. The formalism is similar,
excepted that wave functions are replaced by true probabilities, and that
there is no need for introducing non-commuting operators. However, there
is an analogy in the sense that the initial state is given by a probability
function for each Fourier mode, and the time evolution by the solution of
the equations of motion.

5.2.2 Horizons

Causal horizon

Let us define dH(τ) as the distance travelled by a photon between the
very early universe (say, the Big Bang) and a given time τ . At that time,
two points separated by a distance larger than dH are not in causal contact:
they cannot share any common information, and if their properties are
random, they should be uncorrelated. Going to Fourier space, this means
that on wavelengths λ(τ) ≫ dH(τ), the power spectrum is expected to
vanish (we will see later that this is not exactly the case, and we will explain
why in the last chapter on inflation). Anyway, the scale dH(τ), called the
causal horizon, plays an important role; it is a characteristic distance in
the universe which inevitably appears when solving differential equations,
since wavelengths smaller or larger than dH(τ) are in two different regimes,
called respectively “causal” or “acausal”.

The causal horizon is easy to compute from the geodesics equation of
radial photons, which implies (using as usual units such that c = 1)

dr√
1− kr2

=
dt

a(t)
= dτ . (5.42)
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Integrating this relation, we get

dH = a(t)

∫ r

0

dr√
1− kr2

= a(t)

∫ t

0

dt′

a(t′)
= a(τ) τ (5.43)

where in the last equality we assumed that τ is normalized in such way
that τ −→ 0 near the initial singularity. Let us compute the evolution of
dH during radiation and matter domination. In both cases, a(t) ∝ tn with
n < 1 (during RD, n = 1/2; during MD, n = 2/3). This gives in terms of
proper time t:

dH(t) =
t

1− n . (5.44)

Note that the Hubble radius is given by RH(t) = a/ȧ = t/n, so that

dH(t) =
n

1− nRH(t) . (5.45)

We see that the causal horizon and the Hubble radius are almost equal to
each other, apart from a factor n/(1− n) of order one. This result is true
as long as the expansion of the universe is given by a(t) ∝ tn with n < 1 at
any time between the initial singularity and now. In fact, one could show
that dH ≃ RH holds as long as the universe expansion is always decelerated
since the initial singularity.

Observable universe

We now address the following question: how can we compute the radius
dobs(t0) of the observable universe, and the size of the largest observable
wavelength? For this calculation, let us first assume that the universe
was transparent at any time, and that we can observe directly photons
emitted near the initial singularity. Such photons would have travelled
from the singularity till now by a distance (expressed in units of today)
dobs(t0) = dH(t0). So, the causal horizon also represents the radius of the
observable universe at a given time, assuming that it is transparent at any
time.

In fact, the universe is only transparent to photons since the time of
photon decoupling tdec, and the true observable radius is

dobs(t0) = a(t0)

∫ t0

tdec

dt′

a(t′)
. (5.46)

In practise, the integral is dominated by late times, and rather insensitive
to the lower bound of integration, provided that it is much smaller than the
upper bound. Since tdec ∼ 380, 000 years while the age of the universe is of
the order of ten billion years, it doesn’t make a difference to integrate from
zero or from tdec. In addition, the fact of integrating from tdec ∼ 380, 000
can be seen as an “experimental limitation”. Indeed, suppose that we would
be able to build an instrument measuring the cosmological background
of neutrinos. The universe is transparent to neutrinos since the time of
neutrino decoupling, which is a fraction of second after the Big Bang. If
we could see gravitational waves emitted by the Big bang, we could choose
an even smaller lower bound of integration. So, in principle, the radius of
the observable universe is really dH(t0).

We can get a rough approximation of dobs(t0) by neglecting radiation
domination (which contribution to the integral is negligible) and a possible
recent domination of a cosmological constant or of the spatial curvature
term (we will see in the next chapter that there is indeed a recent stage
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Figure 5.1: The wavelengths of some observable cosmological perturba-
tions compared with the Hubble radius, during radiation domination and
matter domination. Because all wavelengths λ(t) = 2πa(t)/k grow with
negative acceleration and dH(t) ∼ RH(t) grows linearly, the modes enter
one after each other inside the horizon. The smallest perturbations enter
during radiation domination, the others during matter domination. The
largest cosmological perturbation observable today (in CMB observations)
has λ(t0) ≃ RH(t0).

of cosmological constant domination, which does affect the calculation of
dobs(t0). So, the calculation below only indicates the correct order of mag-
nitude). With these simplification, we can use a(t) ∝ t2/3, which gives

dobs(t0) = dH(t0) ∼ 3t0 ∼ 2RH(t0) . (5.47)

However the Hubble radius today is given in terms of the reduced Hubble
parameter h by

RH(t0) =
c

H0
=

3× 105m.s−1

100h km.s−1Mpc−1 = 3000h−1Mpc. (5.48)

So, the radius of the observable universe is of the order of 6000h−1Mpc, i.e.
approximately 8000 Mpc for h ∼ 0.7. This is only 8000 times the typical
distance between two galaxies! But this corresponds to a huge volume:
there should be of the order of ∼ 4π

3 80003 ∼ 1012 galaxies in the observable
universe at time t0... We recall that the result dobs(t0) ∼8000 Mpc was
derived here for a matter-dominated universe; in case of cosmological con-
stant or spatial curvature domination today, there should be corrections to
this estimate.

Evolution of observable wavelengths versus causal horizon

So, observable wavelengths obey to λ(t0) ≤ dH(t0) ≃ RH(t0) today, and
in the past the evolution of wavelengths is always given by λ(t) = 2πa(t)/k.
We have seen that as long as a(t) ∝ tn with n < 1, the Hubble radius evolves
like t. So, during radiation and matter domination, the Hubble radius in-
creases faster than the wavelengths of all perturbations. This is illustrated
in figure 5.1. So, the observable Fourier modes enter one after each other
inside the causal horizon. The modes which enter earlier are those with
the smallest wavelength. The wavelengths of the perturbations observed
today (in the form large scale matter inhomogeneities, CMB anisotropies,
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etc.) were necessarily outside the Hubble radius in the early universe. This
striking property has been puzzling cosmologists for many years. As we
said before, common intuition says that outside the horizon perturbations
should be uncorrelated, and the power spectrum should vanish. So, it would
be natural to start from the initial condition δ(k, τ) = 0, δ̇(k, τ) = 0 for
any kind of perturbation with λ≫ RH . But all equations of evolution are
linear in the regime of interest. Linear equations with vanishing initial con-
ditions imply that perturbations remain null at any time. So the universe
should still be perfectly homogeneous with no galaxies, CMB anisotropies,
etc. We will see in the last chapter that this contradiction can be overcame
by assuming a stage called “inflation”, which generates primordial fluctua-
tions that remain coherent on very large scale, such that P (k) 6= 0 even for
Fourier modes such that λ≫ RH at the beginning of radiation domination.
In this case, the causal horizon still plays a role during RD and MD. Fluc-
tuations do not vanish beyond dH , but they are not affected by any physical
mechanism (a given mechanism is associated with a force mediated by a
boson – for instance, the photon for electromagnetism – travelling at most
at the speed of light). Hence, they are “frozen” until λ ∼ RH . Then,
they start to evolve, according to electromagnetic or gravitational forces
for instance.

Sound horizon

The causal horizon is not the only interesting horizon. In principle, each
physical mechanism can propagate at a maximum speed v(t) which is not
necessarily as large as the speed of light (v = 1). The corresponding horizon
is given by integrating over [v(t)/a(t)]dt instead of [c/a(t)]dt = dt/a(t).
For instance, we will define later the sound horizon in the photon-baryon-
electron fluid, cs, which is close to 1/

√
3 well before photon recombination

(still in units where c = 1, otherwise cs ≃ c/
√
3). The corresponding

horizon is called the sound horizon:

ds = a(t)

∫ t

0

cs(t
′) dt′

a(t′)
≃ dH(t)√

3
. (5.49)

We will see that the sound horizon plays a crucial role in the evolution of
perturbations. Intuitively, it represents the maximum distance over which
the wavefront of acoustic waves propagating at a speed cs can travel between
the early universe and some later time.

5.2.3 Initial conditions

Let us consider some early initial time between nucleosynthesis and recom-
bination. At that time, observable wavelengths are expected to be outside
the Hubble radius, λ ≫ RH , and the corresponding Fourier modes are
not affected by physical mechanisms: they are frozen. However, in real
space and in any single point, microscopic interactions maintain thermal
equilibrium and we can apply results from thermodynamics locally.

At that time the universe contains photons, electrons and baryons in
thermal equilibrium, plus decoupled neutrinos and dark matter particles.
Photons are relativistic with ni ∝ T 3. So, the local photon abundance
nγ(x, τ) = n̄γ(τ) + δnγ(x, τ) is given by the local value of the temperature
T (x, τ) = T̄ (τ) + δT (x, τ), and at linear order:

δnγ

n̄γ
= 3

δT

T̄
(5.50)



78 CHAPTER 5. COSMOLOGICAL PERTURBATIONS

where we omitted the arguments (x, τ) for concision. Note that this relation
is also true in Fourier space, i.e. using the arguments (k, τ). Neutrinos are
decoupled, but we have seen that their distribution is still of the Fermi-
Dirac type with µν ≃ 0 in the simplest models, and Tν = (4/11)1/3T . This
results is true in every point, so

δnν

n̄ν
= 3

δTν
T̄ν

= 3
δT

T̄
=
δnγ

n̄γ
. (5.51)

Hence, γ and ν share a common inhomogeneity δni/n̄i = 3δT/T̄ . A priori,
this is not obviously true for baryons and for cold dark matter particles (we
will label this last component with an index cdm), which could either obey
to initial conditions such that

δnb

n̄b
=
δncdm

n̄cdm
=
δni

n̄i
= 3

δT

T̄
(5.52)

called adiabatic initial conditions, or to more general initial conditions

δncdm

n̄cdm
6= 3

δT

T̄
and/or

δnb

n̄b
6= 3

δT

T̄
(5.53)

in which case entropy perturbations would be present in the early universe.
It is beyond the level of this course to prove that the simplest models
for baryon and dark matter production in the early universe imply exact
adiabatic initial conditions for wavelengths larger than the Hubble radius:
we will admit it, and hence assume that δni/n̄i = 3δT/T̄ is true for all
relevant species with λ ≫ RH . We will see later that observations are
perfectly compatible with such an assumption.

Note that here we discussed the case of γ, ν, b, cdm but not that of
electrons. In fact adiabatic initial conditions are also shared by electrons,
but when studying cosmological perturbations electrons can always be ne-
glected, since they trace baryons (as requested by electric neutrality) while
their mass is negligible with respect to that of baryons. They play no role
apart from maintaining photons and baryons in thermal equilibrium before
recombination.

We can infer from δni/n̄i = 3δT/T̄ the relation between the various
density perturbations δi = δρi/ρ̄i. Non-relativistic species (b, cdm) are
such that ρi = mni in any point, hence δi = δni/n̄i for baryons and cold
dark matter. Relativistic species (γ, ν) satisfy ni ∝ T 3

i and ρi ∝ T 4
i

locally (even for decoupled neutrinos), so δi = (4/3)δni/n̄i for photons and
neutrinos. We conclude that in the early universe, as long as λ≫ RH , and
assuming adiabatic initial conditions,

δb = δcdm =
3

4
δγ =

3

4
δν = 3

δT

T̄
. (5.54)

This equality holds in Fourier space for modes with k≪ aH (super-Hubble
wavelengths). On those scales, the modes are frozen: the density pertur-
bations are constant and the velocity divergences θi are negligible.

We conclude from these relations that initial conditions do not con-
sist in one primordial power spectrum for each species. All perturbations
are related to each others, and are characterized by a single primordial
spectrum from which other power spectra can be immediately computed:
〈|δb|2〉 = 〈|δcdm|2〉 = 9

16 〈|δγ |2〉 = 9
16 〈|δν |2〉.
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Figure 5.2: The distribution of galaxies in two thin slices of the neighboring
universe, obtained by the 2dF Galaxy Redshift Survey (see J. A. Peacock
et al., Nature 410 (2001) 169-173). The radial coordinate is the redshift, or
the distance between the object and us.

5.2.4 Observable quantities

Power spectrum of large scale structure

If we have a large three–dimensional map of the galaxy distribution in
the universe (see e.g. Fig. 5.2), we can smooth it on very large scales and
reconstruct a smooth function representing the fluctuations in the luminous
galactic matter (lgm) density on large scales, δlgm(x, τ0). The corresponding
Fourier distribution δlgm(k, τ0) is then readily obtained. Finally, the average
of |δlgm(k, τ0)|2 for all Fourier modes k with a fixed wavenumber k can
be compared with the theoretical power spectrum Plgm(k) computed with
cosmological perturbation theory for a given cosmological model:

〈|δlgm(k, t)|2〉k/k −→ Plgm(k) . (5.55)

If λ = 2πa0/k is small with respect to the physical size L of the survey, this
average includes many independent terms and should be very close to the
theoretical power spectrum. In the other limit, only few independent modes
can contribute to the average: in this case the average and the theoretical
prediction can differ significantly by a sample variance called also cosmic
variance.

Let us define the non-relativistic matter density ρm = ρb + ρcdm and
its perturbation δm = δρm/ρ̄m. The theory of cosmological perturba-
tions can predict accurately the total matter power spectrum P (k, τ0) =
〈|δm(k, τ0)|2〉, not the luminous galactic matter power spectrum Plgm(k, τ0) =
〈|δlgm(k, τ0)|2〉. However, various calculations (based on the modeling of
galaxy formation) prove that on large scales, the distribution of luminous
galactic matter “traces” the distribution of mass. This means that the inho-
mogeneities in luminous galactic matter is proportional to the total density
inhomogeneities (i.e., the total inhomogeneities of non-relativistic matter,
baryons and cold dark matter). The unknown coefficient of proportionality
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is called the light-to-mass bias b:

δlgm(k, τ) ≃ b δm(k, τ) . (5.56)

It follows that Plgm(k, τ0) = b2P (k, τ0). Hence, at least the shape of the
luminous matter power spectrum can be compared with the predictions of
the theory of cosmological perturbations. However, galaxy maps are not the
only way to probe the matter power spectrum. For instance, a statistical
study of the weak lensing of galaxy images probes directly the total matter
power spectrum (without the light-to-mass bias uncertainty) much further
in the past than galaxy maps; it allows a measurement of P (k, τ) on a wide
range of scales and for various times or redshifts, ranging typically up to
z ∼ 2 for future experiments.

Power spectrum of CMB temperature anisotropies

Before recombination and photon decoupling, the thermal plasma (photons,
electrons and baryons) has small temperature/density inhomogeneities. In
the approximation of instantaneous decoupling, photons decouple at some
time τdec and then propagate without interactions. Hence, photons reaching
us from a direction n (with |n| = 1) have decoupled from the plasma at a
time τ = τdec and at a spatial coordinate x = rdecn, with rdec = fk(χdec) =
fk(τ0−τdec) (see section 2.2.4). In this chapter, we mainly focus on the case
of a flat/Euclidean universe, for which rdec = χdec = [τ0− τdec]. This point
is located on the Last Scattering Surface (LSS), defined as the ensemble of
points where a photon last scattered before reaching us today: obviously
this surface is by definition a sphere centered on us, with comoving radius
equal to [τ0 − τdec] in the Euclidean case.

Since photons have a a Planckian distribution even after decoupling, the
information that we receive from the LSS in a given direction n consists
in one value of the temperature, Tobs(n). Actually, there is some extra
information contained in the photon polarization in a given direction, but
for simplicity we will not discuss polarization in this course.

We can define T̄ as the temperature averaged over all directions (mea-
sured to be 2.726 K). The temperature anisotropy map is then defined as

δT

T̄

∣

∣

∣

∣

obs

(n) =
Tobs(n)− T̄

T̄
. (5.57)

In cosmological perturbation theory, if all perturbations in the universe are
stochastic and Gaussian, then the quantity δT/T̄ should also be stochastic
and Gaussian. It is then fully characterized by its two-point correlation
function. This function can be defined in real space, on the sphere, as

〈

δT

T̄
(n)

δT

T̄
(n′)

〉

= F (θ) with cos θ = n.n′. (5.58)

This function, called the “angular correlation function”, depends only on
the angle between the two directions (n,n′) as a consequence of homo-
geneity and isotropy of the background. If δT/T̄ was a three-dimensional
quantity, we would also be interested in its two-point correlation function
in Fourier space, namely the Fourier power spectrum. However δT/T̄ is a
two dimensional function depending only on a unit vector n (i.e. on two
angles). Hence, it should be expanded in spherical harmonics rather than
Fourier modes:

δT

T̄

∣

∣

∣

∣

obs

(n) =
∑

al,m Y l,m(n) (5.59)
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with al,m = a∗l,−m since δT/T̄ is real. The equivalent of the Fourier power

spectrum in Fourier space, 〈|δ(k)|2〉, is the harmonic power spectrum in
harmonic space, defined as:

〈|al,m|2〉 = Cl . (5.60)

We recall that we are dealing with a stochastic perturbation theory, in which
δT/T̄ and hence also al,m are stochastic numbers. The average holds over
all possible realization of these stochastic, Gaussian numbers. In Fourier
space, isotropy implies that the Fourier power spectrum only depends on
k, not k. In harmonic space, for the same reason, the harmonic power
spectrum 〈|al,m|2〉 only depends on l (the angular scale of the multipole),
not on m (the orientation of the multipole). Note that the angular correla-
tion function F (θ) and the harmonic power spectrum Cl contain the same
amount of information, since they are related through

F (θ) =
∑

l

2l+ 1

4π
ClPl(cos θ) (5.61)

where Pl is the Legendre polynomial of order l. In principle they can
be used indifferently, but usually Cl is preferred, because it gives more
weight to small angular scales where the function is non-trivial and contains
interesting features. In summary, the predictions of linear cosmological
perturbation theory for CMB anisotropies consists in one function F (θ) or
one set of multipoles Cl, which can in principle be computed for a given
cosmological model.

Observers can compare the observed map with the theoretical power
spectrum in the following way. The observed map can be expanded in
multipoles al,m. If the theoretical model is correct, the average of all al,m’s
with l fixed should be close to the theoretical prediction for Cl:

〈|alm|2〉m −→ Cl . (5.62)

Like for the matter power spectrum, we can raise the following argument:
if l is large, there are many independent terms in the average (since −l ≤
m ≤ l) and the left-hand side should be very close to the theoretical power
spectrum; in the opposite limit, there are very few independent terms in
the average and the outcome can differ significantly from the theoretical
prediction, by an amount called sample variance or cosmic variance.

Finally, we note that a multipole l corresponds to anisotropies with
an angular scale θ = π/l (for the dipole l = 1, the angular scale is π as
expected). In the limit of small angles / large l’s, an angle subtends a length
on the LSS equal to λ = dA(zdec)× θ, by definition of the angular diameter
distance dA at the redshift of decoupling. On the last scattering surface, this
length λ is the wavelength of Fourier modes such that λ = 2πadec/k. We
conclude that the correlation function for a given θ or the power spectrum
for a given multipole l contains information about the Fourier modes of
perturbations on the LSS at time τdec and for a wavenumber

k ∼ 2πadec
dA(zdec) θ

∼ 2adec l

dA(zdec)
. (5.63)
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5.3 Evolution and results

5.3.1 Global evolution during radiation and matter dom-
ination

Understanding the full evolution of cosmological perturbations is rather
involved. Here, we will only compute some approximate solutions in a few
limits and match them to each other in order to understand roughly what
is going on.

For simplicity, in section 5.3, we will neglect the presence of neutrinos.
In this way, we can neglect the anisotropic pressure σ and work in the
approximation where φ = ψ1. The Einstein equations then reduce to (5.27),
(5.28), (5.29). If during some stage we can write a relation between the total
pressure and density perturbations of the type δp = c2s δρ, it it useful to
combine Eqs. (5.27), (5.29) into:

(

2
ä

a
− (1− 3c2s)

(

ȧ

a

)2
)

φ+ k2c2sφ+ 3(1 + c2s)
ȧ

a
φ̇+ φ̈ = 0 . (5.64)

Radiation domination

Between nucleosynthesis and matter-radiation equality, the total energy
density is dominated by the contribution of ultra-relativistic photons (since
we decided to neglect neutrinos here): ρ̄ ≃ ρ̄γ ∝ a−4. In this case, the
Friedmann equation implies that ȧ is constant, hence a ∝ τ . The condition
for a mode to be above the Hubble scale reads:

λ≫ RH ⇔ k ≪ 2π
ȧ

a
⇔ kτ ≪ 2π . (5.65)

During this stage, the total pressure and density perturbations (δp, δρ) are
those from relativistic photons, so δp = c2s δρ with c2s = w = 1/3. In this
limit, we can write Eq. (5.64) as:

k2

3
φ+

4

τ
φ̇+ φ̈ = 0 . (5.66)

Performing the change of variable φ = τ3/2u, we get

ü+
1

τ
u̇+

(

k2

3
− 9

4τ2

)

u = 0 , (5.67)

which solutions are Bessel functions

u = J±3/2(z) with z ≡ kτ√
3
= kcsτ . (5.68)

These Bessel functions have a simple analytic expression leading finally to:

φ = C1 (kτ)
−2

(

sin z

z
− cos z

)

+ C2 (kτ)
−2
(

−cos z

z
− sin z

)

, (5.69)

where C1 and C2 are two constants of integration for each mode k. Since
we are dealing with a stochastic theory, C1 and C2 can be seen as two

1After photon decoupling, photons also acquire some anisotropic pressure σ, since
they are not playing the role of a perfect fluid anymore. However, after photon decoupling
(i.e. during matter domination and later), the density of photons is very small compared
to that of baryons and cold dark matter, and the tiny σ induced by photons plays a
negligible role.
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random numbers taking a different value for each k. If the perturbations
are Gaussian and isotropic, all the information concerning the statistical
properties of {C1(k), C2(k)} is contained in the power spectra 〈|C1(k)|2〉
and 〈|C2(k)|2〉, which depend only on the modulus k. The evolution of the
photon density perturbations is then given by Eq. (5.27) with δρ = ρ̄γδγ

and, using the Friedmann equation, 4πGa2ρ̄γ = 3
2

(

ȧ
a

)2
. Eq. (5.27) then

reads:

− 3

τ2
φ− 3

τ
φ̇− k2φ =

3

2τ2
δγ . (5.70)

Inserting the solution (5.69) for φ, we obtain:

δγ = −2C1(kτ)
−2

[

2
(

z2 − 1
) sin z

z
−
(

z2 − 2
)

cos z

]

+2C2(kτ)
−2
[

2
(

z2 − 1
) cos z

z
−
(

z2 − 2
)

sin z
]

. (5.71)

Let us review the main implications of these results.

Outside the Hubble radius. First, we write the asymptotic solution outside
the Hubble radius, when kτ ≪ 1. In this limit, Eq. (5.69) gives:

φ −→ 1

9
C1 −

√
3

(kτ)3
C2 . (5.72)

Hence, φ is the sum of two modes, the first one being asymptotically con-
stant, and the second one decaying like τ−3. The constants C1 and C2

should be fixed by some prescription for the initial conditions at some very
early time τi, when kτi is extremely small with respect to one. This pre-
scription will arise from the theory of inflation, that we will study later.
However, in this chapter, it is reasonable to admit that initial conditions
are such that the second mode is at most of the same order as the first
one at initial time: so, C2 ≤ C1(kτi)

3. At some later time, the decaying
mode gets suppressed by a factor (τi/τ)

3 and becomes vanishingly small
with respect to the first one. So, it is safe to neglect the decaying mode
and keep only the non-decaying one proportional to C1:

φ −→ C1

9
. (5.73)

The corresponding initial solution for photon perturbations is:

δγ −→ −
2C1

9
. (5.74)

Hence, both φ and δγ = 4 δT/T̄ are constant outside the Hubble radius.
Finally, for adiabatic initial conditions, we know that: δb = δcdm = 3

4δγ . We
conclude that the full initial conditions are given by constant perturbations
outside the Hubble radius during radiation domination, related through:

δγ = 4
δT

T̄
=

4

3
δb =

4

3
δd = −2φ = −2C1

9
, (5.75)

where C1 is a function of k (yet arbitrary).

Inside the Hubble radius. Still keeping only the non-decaying mode propor-
tional to C1, we can write the asymptotic solution for φ and δγ inside the
Hubble radius and during radiation domination:

φ −→ −C1(kτ)
−2 cos z , (5.76)

δγ −→ 2

3
C1 cos z , (5.77)
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still with z ≡ (kτ/
√
3) = (kcsτ). These solutions show that once the modes

enter inside the Hubble radius, or more precisely, inside the sound horizon
(when kcsτ is of the order of one), they start to oscillate as a result of the
competition between pressure and gravity. Each mode behaves roughly like
a harmonic oscillator placed initially away from its equilibrium point by the
initial conditions of Eq. (5.75). The largest wavelengths enter later inside
the sound horizon: hence, they remain frozen for a longer time and start
to oscillate later. During this era, the photons and the baryons remain
tightly coupled. Hence it is possible to show that δγ = 4

3δb remains true
even inside the Hubble radius before decoupling. Finally, the solution for
δcdm, the perturbations of cold dark matter, is difficult to compute during
radiation domination. In this era, cold dark matter particles behave like
test particles, in the sense that they feel metric perturbations, but do not
influence them (since the universe is dominated by relativistic matter). Cold
dark matter does not experience pressure forces, so nothing prevents it from
accumulating inside potential wells (this is called gravitational clustering).
Hence, δcdm grows with time. A detailed investigation of Einstein equations
and continuity/Euler equations for cold dark matter would show that inside
the Hubble radius, δcdm grows proportionally to C1 ln(kτ).

Matter domination after photon decoupling

We leave the discussion of the intermediate stage (around equality and de-
coupling) for the next subsection, and switch directly to the stage of matter
domination after decoupling, in order to find again convenient approxima-
tions and simple solutions. Now, the total energy density is dominated
by the contribution of baryons and cold dark matter, which are both non-
relativistic: in good approximation, ρ̄ ≃ (ρ̄b+ ρ̄cdm) ∝ a−3. The Friedmann
equation shows that a1/2ȧ is constant, hence a is proportional to τ2. The
condition for a mode to be outside the Hubble radius now reads:

λ≫ RH ⇔ k ≪ 2π
ȧ

a
⇔ kτ ≪ 4π . (5.78)

During this era, we can write the total density perturbation as δρ = ρ̄mδm,
where m stands for total non-relativistic matter (baryons plus cold dark
matter), for which δp is vanishingly small. Hence we can write Eq. (5.64)
with c2s = 0 and a ∝ τ2:

6

τ
φ̇+ φ̈ = 0 . (5.79)

The general solution of this equation reads:

φ = D1 + (kτ)−5D2 , (5.80)

where D1 and D2 are two constants of integration for each mode, hence
two unknown functions of k. The corresponding solution for δm can easily

be inferred from Eq. (5.27) with δρ = ρ̄mδm, using 4πGa2ρ̄m = 3
2

(

ȧ
a

)2
and

a ∝ τ2:
−
(

12

τ2
+ k2

)

φ− 6

τ
φ̇ =

6

τ2
δm . (5.81)

Inserting the solution (5.80) for φ, we obtain:

δm = −
(

2 +
k2τ2

6

)

D1 +

(

3− k2τ2

6

)

(kτ)−5D2 . (5.82)

We will come back later to the way to compute D1 and D2, but it is
clear already that even if the two modes have the same order of magnitude
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initially, the second one will decay like τ−5, and the full solution will be
dominated by the other term:

φ −→ D1 ,

δm −→ −
(

2 +
k2τ2

6

)

D1 . (5.83)

These solutions show that once the modes enter inside the Hubble radius,
matter perturbations start to grow, as a simple result of gravitational clus-
tering: |δm| ∝ τ2 ∝ a (there is a minus sign in Eq. (5.83) because in real
space, overdensities with δm > 0 correspond to potential wells with φ < 0).
Hence, during matter domination, the structures observed in the universe
(galaxies, clusters, etc.) can form. Structures become non-linear on a given
scale when δm ∼ k2τ2D1 ∼ 1. So, the smallest wavelengths (with the
largest k) become non-linear first.

Note that gravitational clustering had started already during radiation
domination for dark matter. However, in that regime, dark matter behaved
as a test fluid: it did not influence the gravitational potential. During
matter domination, baryons and dark matter cluster, but they are not
anymore test fluids: they do influence the gravitational potential. Hence,
it is not a surprise to find that during radiation domination, φ decays and
δcdm grows only like the logarithm of the scale factor, while during MD, φ
does not decay and δm grows as fast as the scale factor.

Poisson equation

The Poisson equation is the limit of Einstein equations on small distances,
when any kind of relativistic matter can be neglected. Hence, we expect the
Poisson equation to be applicable during matter domination on scales with
kτ ≫ 1. Indeed, on such scales, we have seen that the Einstein equations
imply

4πGδρ = −k
2

a2
φ (5.84)

(see equation (5.36)). Using δρ = ρ̄mδm, the Friedmann equation 4πGa2ρ̄m =
3
2

(

ȧ
a

)2
and a ∝ τ2, this relation becomes:

δm = −k
2τ2

6
φ , (5.85)

in agreement with the solutions in Eq. (5.83) for kτ ≫ 1.
In this section, we found that during matter domination, gravitational

clustering causes the growth of matter perturbations inside the Hubble ra-
dius, while φ remains constant. It sounds like a paradox that φ remains
constant during structure formation (at least within the linear theory): in-
tuitively, gravitational clustering should imply that φ grows (i.e., in real
space, gravitational potential wells should get deeper and deeper). This
intuition is wrong and based on Newtonian mechanics in a static universe.
In the expanding universe, the Poisson equation says that δρ is propor-
tional to the physical Laplacian ∆φ/a2. When φ is constant, the comoving
gradient ∆φ is constant, and the physical gradient ∆φ/a2 decays like a−2;
hence, it does not decay as fast as energy is diluted, since ρ̄m ∝ a−3; so,
the density contrast δρm/ρ̄m grows like a. Intuitively, the fact that φ is
constant during matter domination is the result of an exact cancellation
between the competing effects of gravitational clustering (which tends to
concentrate matter) and of the universe expansion (which tends to dilute
matter).
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Summary and transition between the two stages

During radiation domination, we have seen that all perturbations δγ , δb,
δcdm and φ are constant outside the Hubble radius, and related to each other
by factors of order one (Eq. (5.75)). Inside the Hubble radius, the compe-
tition between pressure and gravity in the photon-electron-baryon thermal
plasma is responsible for acoustic oscillations (Eq. (5.71)); as a result, the
gravitational potential experiences damped oscillations (Eq. (5.69)). Cold
dark matter does not feel pressure forces and experiences gravitational clus-
tering, however growing as slowly as C1 ln(kτ), i.e. as the logarithm of the
scale factor.

During the intermediate stage between matter-radiation equality and pho-
ton decoupling, analytic solutions are difficult to find because no simple
approximation holds. Of course, the transition from full RD (a ∝ τ) to
full MD (a ∝ τ2) is smooth. Just before photon decoupling, photon and
baryons still form a tightly coupled fluid with δγ = 4

3δb, but this fluid is not
anymore ultra-relativistic at the beginning of the matter dominated era.
Actually, the sound speed in this fluid is easily found to be:

c2s ≡
δpγ

δργ + δρb
=

1
3 ρ̄γδγ

ρ̄γργ + 3
4 ρ̄bδγ

=
1

3

(

1 +
3ρ̄b
4ρ̄γ

)−1

. (5.86)

As ρ̄b/ρ̄γ grows from zero to infinity, c2s decays from 1/3 to zero. During
the stage between equality and decoupling, the perturbations remain al-
most constant outside the Hubble radius (although a detailed study would
show a very small time-evolution). Inside the Hubble radius, the photon-
baryon fluid experiences damped acoustic oscillations. The evolution of the
gravitational potential and of cold dark matter perturbations depend very
much on the ratio ρ̄b/ ¯ρcdm. If this ratio is negligible, baryons behave like a
test fluid, while dark matter drives gravity. In this case, the solutions for
δcdm and φ become similar to those found during full matter domination
(see Eq. (5.83)): δcdm experiences a smooth transition between the ln(kτ)
behavior and the k2τ2 behavior, while φ freezes-out to a constant value.
The relation between φ and δcdm is given by the Poisson equation. If in-
stead ρ̄b/ ¯ρcdm ≫ 1, the dark matter particles behave like a test fluid while
baryons drive gravity. In this case, during the intermediate stage, the grav-
itational potential follows the damped oscillations of the photon-baryon
fluid while δcdm grows very slowly.

At recombination time, photons decouple gradually from baryons. This
is the most difficult stage to study precisely: it is necessary to integrate
over time the full perturbed Boltzmann equation, which is far beyond the
level of this course. However, we don’t need entering into such details
for understanding the main results of the next sections. After decoupling,
photon travel freely (the universe is transparent): we don’t need to follow
them anymore, since in first approximation the observable CMB patterns
are related to the photon perturbations at decoupling. After decoupling,
baryons are non-interacting and non-relativistic particles, exactly like dark
matter. So, inside the Hubble radius, they fall inside the same gravitational
potential wells as dark matter. Soon after decoupling, one has δb = δcdm:
a gravitational equilibrium settles between baryons, dark matter and the
gravitational potential, summarized by the Poisson equation

δb = δcdm = −k
2τ2

6
φ . (5.87)
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But how is this potential φ related to the one before photon decoupling?
Intuitively, this depends again on the ratio ρ̄b/ ¯ρcdm. If this ratio is negli-
gible, baryons behave like a test fluid while dark matter drives gravity. In
this case, −(6/k2τ2) δcdm = φ remains constant and unaffected by photon
decoupling while δb changes rapidly to reach δcdm. If the ratio ρ̄b/ ¯ρcdm is
large, dark matter behaves like a test-fluid; −(6/k2τ2) δb = φ freezes-out
to the value reached just before decoupling, while δcdm changes rapidly to
reach δb. If the ratio ρ̄b/ ¯ρcdm is of order one, the system finds an interme-
diate equilibrium between these two limits.

During matter domination and after decoupling, all perturbations are still
constant outside the Hubble radius. Inside the Hubble radius, the gravita-
tional potential φ is also constant, while δb = δcdm grows proportionally to
(kτ)2, i.e. linearly with the scale factor. In this stage, we are not interested
in following the decoupled photons, since we can estimate observable CMB
anisotropies essentially from photon perturbations at decoupling (see the
next sections).

Exact numerical solutions. Various numerical codes have been developed
for integrating the full set of equations for all perturbations. They provide
solutions which are precise up to a fraction of percent. For instance, one
can have a look at the public codes downloadable from the websites:

http://camb.info/

or:

http://cfa-www.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html.

Even better, one can play with an web interface at:

http://lambda.gsfc.nasa.gov/cgi-bin/cmbfast form.pl

which computes the CMB and matter power spectra for any choice of cos-
mological parameters. In Figure 5.3, we used such codes for plotting the ac-
tual evolution of φ, δγ and δcdm in a cosmological model with ρ̄b/ρ̄cdm = 0.2.
On the top panel, it is clear that the metric perturbation experiences
damped oscillations during radiation domination and inside the Hubble
radius (for the largest k shown here, there is only one oscillation; going to
larger k we would see more of them). After equality, we see that φ freezes
out, more or less to the value reached at equality (since we are in the case
of a small ratio ρ̄b/ρ̄cdm). In the middle panel, we see the acoustic oscilla-
tions in δγ , which start for each k when the mode enters inside the Hubble
radius, and get rapidly damped after equality. Finally, in the lower plot,
we see the growth of δcdm inside the Hubble radius - first logarithmic, then
linear with a after equality.

5.3.2 Impact of a possible cosmological constant dom-
ination stage

Finally, let us assume a possible stage of cosmological constant domination
after matter domination. In this case, the Friedmann equation implies

(

ȧ

a

)2

=
8πG

3
a2(ρ̄m + ρ̄Λ) , (5.88)

where the cosmological constant energy density ρ̄Λ is time-independent by
construction, and the non-relativistic matter density ρ̄m = ρ̄b+ ρ̄cdm scales
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Figure 5.3: Evolution of the metric φ = ψ (top), photon density δγ (middle)
and dark matter density perturbations δd (bottom) in a neutrinoless model
with ρ̄b/ρ̄cdm = 0.2, obtained numerically as a function of the scale factor a
and Fourier wavenumber k. In order to get a better view, time is evolving
from back to front in the upper plot, and from front to back in the lower
two plots. The initial condition was set arbitrarily to k3/2φ = −10−5. The
blue line corresponds to radiation/matter equality, and the green line to
Hubble crossing (λ = RH) for each mode.
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like a−3. The derivative of Eq. (5.88) gives a usefull relation:

ä

a
−
(

ȧ

a

)2

=
4πG

3
a2(2ρ̄Λ − ρ̄m) . (5.89)

The pressure of baryons and dark matter is negligible, and the cosmological
constant is homogeneous. So, the total pressure perturbation δp during this
stage can be neglected, and Eq. (5.29) gives:

φ̈+ 3
ȧ

a
φ̇+

(

2
ä

a
−
(

ȧ

a

)2
)

φ = 0 . (5.90)

Using Eqs. (5.88, 5.89), we finally obtain:

φ̈+ 3
ȧ

a
φ̇+ 8πGa2ρΛφ = 0 . (5.91)

Comparing with the same equation during matter domination (5.79), we see
that the effective squared mass term in front of φ vanishes during matter
domination, but not when the cosmological constant starts to dominate:
hence, φ=constant is a solution in the first case but not in the second one.
A detailed integration of Eqs. (5.88, 5.91) would show that when ρ̄Λ/ρ̄m
starts to be sizeable, the gravitational potential starts to decay. Note that
the coefficients of Eq. (5.91) are independent of k, so the decay is the same
for all scales (above and below the Hubble radius). The Poisson equation
(5.36) still holds inside the Hubble radius, so the decay of φ implies that
δm does not grow as fast as the scale factor during Λ domination.

We conclude that a possible cosmological constant domination stage
would slow down the growth of stuctures on all scales. This can be seen in
the numerical solutions of Figure 5.3. The model used there has a cosmo-
logical constant corresponding today to ΩΛ = 0.7. In the upper plot, we
see that when a approaches one, φ decays slightly on all scales. This effect
remains very small, and it is even difficult to see it in the middle plot for
δcdm.

5.3.3 Computing the matter power spectrum

We have seen in section 5.2.4 that the power spectrum of matter perturba-
tions today, P (k, τ0) =

〈

|δm(k, τ0)|2
〉

, is an observable quantity. Here, we
will try compute it analytically (at least in an approximate way), using the
results of the previous section. We must start from some initial conditions
at a time τi, when all modes observable today are outside the Hubble radius
during radiation domination. At that time, Eq. (5.75) gives the relation
between the various perturbations and the random number C1(k) for each
mode, but does not specify the primordial power spectrum 〈|C1(k)|2〉 as a
function of k.

The most natural initial condition would be a “scale-invariant spec-
trum”, i.e. an initial condition for which the universe looks scale-free,
roughly like a fractal distribution. This is the case if the primordial spec-
trum of each density perturbation multiplied by k3 (i.e., the product k3〈|δj(k, τi)|2〉)
is independent of k. This requires 〈|C1(k)|2〉 to be proportional to k−3: in
this case,

〈|φ(k, τi)|2〉 =
1

4
〈|δγ(k, τi)|2〉 =

4

9
〈|δb,cdm(k, τi)|2〉 =

1

81
〈|C1|2〉 ∝ k−3 .

(5.92)
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Such a scale-invariant primordial spectrum is often called a Harrison-Zel’dovitch
spectrum, from the name of two famous cosmologists. We will see in the
chapter on inflation that the favorite mechanism for the generation of fluc-
tuations predicts a nearly scale-invariant spectrum. Such initial conditions
are also strongly indicated by observations. Hence, we will assume that the
primordial spectrum is nearly scale-invariant, and that the deviation with
respect to the Harrison-Zel’dovitch case can be represented by a power-law:

〈|φ(k, τi)|2〉 = ... = Akn−4 , (5.93)

where A is some normalization factor for the primordial fluctuations, and
the spectral index n is close to one by assumption.

Let us assume first that ρ̄b/ρ̄m ≪ 1, and follow the evolution of δcdm(k, τ),
starting from some initial condition φ(k, τi) for each mode. At the end of
radiation domination, when τ = τeq:

1. some of the modes observable today are still outside the Hubble radius
at that time. We have seen that for these modes:

δcdm(k, τeq) = −2φ(k, τi) for kτeq ≪ 1 . (5.94)

2. some of the modes observable today are already inside the Hubble
radius, and started to grow in such way that

δcdm(k, τeq) ∝ φ(k, τi) ln(kτeq) for kτeq ≫ 1 . (5.95)

In the limit ρ̄b/ρ̄m ≪ 1, the dark matter drives gravity after equality.
Hence, after τ = τeq, the gravitational potential freezes-out and the dark
matter density grows like (2 + k2τ2/6). In first approximation, we can do
a matching between the solution of Eq. (5.83) and that from Eqs. (5.94,
5.95):

−
(

2 +
k2τ2eq
6

)

D1(k) = −2φ(k, τi) for kτeq ≪ 1 , (5.96)

∝ φ(k, τi) ln(kτeq) for kτeq ≫ 1 .(5.97)

This gives the value of the coefficient D1(k):

D1(k) ≃ φ(k, τi) for kτeq ≪ 1 , (5.98)

∝ ln(kτeq)

k2τ2eq
φ(k, τi) for kτeq ≫ 1 . (5.99)

Later on, during matter domination, the solution of Eq. (5.83) still applies.
If we are still during matter domination today, we find:

δcdm(k, τ0) = −
(

2 +
k2τ20
6

)

D1(k) , (5.100)

with D1(k) given by Eqs. (5.98, 5.99) in the two limits kτeq ≪ 1 and
kτeq ≫ 1. However, we should remember that modes observable today are
all inside the current Hubble radius, so kτ0 ≫ 1. Hence the last result can
be simplified in:

δcdm(k, τ0) ≃ −k
2τ20
6

φ(k, τi) for kτeq ≪ 1 , (5.101)

∝ −k
2τ20
6

ln(kτeq)

k2τ2eq
φ(k, τi) for kτeq ≫ 1 . (5.102)
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Finally, using Eq. (5.93), we can write the matter power spectrum observ-
able today as:

P (k) ≃ k4τ40
36

Akn−4 for kτeq ≪ 1 , (5.103)

∝
(

τ20
τ2eq

ln(kτeq)

)2

Akn−4 for kτeq ≫ 1 . (5.104)

We infer the two asymptotic behaviors of the matter power spectrum:

P (k) ∝ kn for kτeq ≪ 1 , (5.105)

∝ ln(kτeq)
2kn−4 for kτeq ≫ 1 . (5.106)

The behavior in the intermediate region (kτeq ∼ 1) can only be found with a
detailed numerical integration, using the codes mentioned at the end of the
last section. In Figure 5.4, the power spectrum P (k) has been computed
numerically for a model with ρ̄b/ρ̄m = 0.18 and n = 1, and is compared with
the two above asymptotes, which turn out to be excellent approximations
away from kτeq ∼ 1.
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Figure 5.4: In red: matter power spectrum P (k) computed numerically for
a simple cosmological model in a flat universe, with ρ̄b ≪ ρ̄cdm (or in other
words: Ωb ≪ Ωcdm). In this case, the imprint of acoustic oscillations is very
small (although still visible around k ∼ 0.1h/Mpc) and the asymptotic
approximations of Eq. (5.105, 5.106), corresponding to the blue dashed
curves on the figure, work very well.

This was the result assuming ρ̄b/ρ̄m ≪ 1. In the opposite limit ρ̄b/ρ̄m ≫
1, the gravitational potential follows the baryon perturbations during the
intermediate stage, i.e. experiences damped acoustic oscillations inside the
Hubble radius. At decoupling, φ freezes-out with an imprint of these os-
cillations, in equilibrium with the baryons: δb = −(k2τ2/6)φ. Cold dark
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matter behaves like a test fluid and shares the same value δcdm = δb. Dur-
ing matter domination, δb = δcdm grows in the usual way inside the Hubble
radius, while φ remains frozen. So, in this case, the branch kτeq ≪ 1 of the
potential is exactly the same, but the branch kτeq ≫ 1 drops more sharply
as a function of k, with additional oscillations imprinted in the spectrum
and frozen since that time.

In the intermediate case (ρ̄b/ρ̄m ∼ 1), the power spectrum is in between
these two cases: the solution for kτeq ≫ 1 departs from Eq. (5.102) through
a smaller slope and a small imprint of acoustic oscillations.

Finally, if there is a recent stage of cosmological constant domination
after matter domination, the amplitude of the power spectrum goes down
at late times, but the shape is unchanged.

In summary, the matter power spectrum today should depend on the
following quantities:

1. the overall normalization depends on the primordial spectrum am-
plitude A, on the age of the universe τ0, and on the cosmological
constant.

2. the overall slope depends on the primordial spectrum index n.

3. the scale kmax of the maximum in P (k) depends on the time of equal-
ity τeq , i.e. of the matter-to-radiation ratio (ρ̄b + ρ̄cdm)/ρ̄r. The radi-
ation density is fixed by the CMB temperature, so in fact τeq only de-
pends on the matter density today, i.e. on ωb+ωcdm = (Ωb+Ωcdm)h2.

4. the shape of the spectrum for k > kmax depends on n, but also on
ρ̄b/ρ̄cdm = Ωb/Ωcdm (a high baryon density implies a lower amplitude
for k > kmax, as well as additional oscillations).

The last three effects are illustrated in Figure 5.5. For simplicity, we do
not discuss here the effect of neutrinos and of a possible spatial curvature
on the power spectrum.

5.3.4 Computing the temperature anisotropy spectrum

In Chapter 2, we have seen that in the homogeneous case the photons have
a Planckian distribution before and after decoupling:

fγ(p, t) =
1

e
p

T (t) − 1
(5.107)

with T (t) ∝ 1/a(t). Here, in perturbed cosmology, the distribution depends
on many more arguments, namely (p,x, t). However, thermal equilibrium
still holds locally before decoupling. Hence, the dependence with respect to
p = |p| must still be of the Planckian type. If the unit vector n denotes the
direction of the momentum (n = p/p), we can write the perturbed photon
distribution as:

fγ(p,n,x, t) =
1

e
p

T̄+δT − 1
(5.108)

where the average T̄ is a function of t only, while the perturbation δT
depends on all arguments excepted p: namely, δT = δT (n,x, t).

Let us work in the limit of instantaneous decoupling: we assume that
for τ ≤ τdec, the photons are tightly coupled with baryons and electrons,
while for τ > τdec they are fully decoupled.
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Figure 5.5: The red solid line shows the same reference matter power spec-
trum P (k) as in the previous figure. The other lines show the effect on
P (k) of increasing one of the following quantities: n (the overall slope of
the power spectrum increases); τeq (the scale of the maximum kmax de-
creases); and finally ωb/ωcdm (the power on scales k > kmax is suppressed
and the imprint of acoustic oscillations is more visible).

• Before decoupling. In the previous sections, we said that in this
regime the photons can be treated as a perfect fluid, with only two
independent variables {δγ , θγ}. Can we reconcile this simple fluid
description with the more complicated framework introduced above?
We can, because as long as photons are strongly coupled, the function
(δT/T̄ )(n,x, t) takes a very particular form. First, we notice that an
observer comoving with the photon fluid would see the same value
of the temperature in all directions. This follows from the fact that
in thermal equilibrium, the relation ργ ∝ T 4 holds locally, hence
δγ = 4δT/T̄ . Hence, the observer comoving with the photon fluid
would see a temperature perturbation

δT

T̄
(n,x, t) =

1

4
δγ(x, t) (5.109)

with no dependence on n. However, in general, the tightly-coupled
photon fluid is not at rest with respect to the coordinate system: it
has a bulk velocity vγ(x, t). So, an observer at rest with the coor-
dinate system will see a Doppler effect induced by the motion of the
fluid with respect to him. The Doppler effects shifts the wavelength
of each photon according to δλ/λ = (vγ .n). Since the blackbody tem-
perature is inversely proportional to the average photon wavelength,
the Doppler effect induces a correction δT/T = −δλ/λ = −(vγ .n) to
the temperature perturbation. We conclude that the observer at rest
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with the coordinate system would see a temperature given by

δT

T̄
(n,x, t) =

1

4
δγ(x, t)− n.vγ(x, t) . (5.110)

In other words, if the temperature anisotropy in a given point was
expanded in spherical harmonics, there would only be a monopole
and a dipole. We conclude that before decoupling, the photons need
not be described by a complicated function (δT/T̄ )(n,x, t), but just
by one function of space δγ(x, t) and one vector field vγ(x, t). If we
go to Fourier space and introduce as usual the velocity divergence θ
(other terms in the velocity field contribute to vector perturbations),
we conclude that in Fourier space, tightly coupled photons are just
described by the two functions δγ(k, t) and θγ(k, t). This is exactly
what we assumed in the previous sections of this chapter. Actually,
it is even possible to show that the perturbed Boltzmann equation
giving the time-evolution of fγ(p,n,x, t) reduces to the continuity
and Euler equations for δγ(k, t) and θγ(k, t) in this regime.

• After decoupling. In this regime, thermal equilibrium does not
hold anymore. It is possible to show that for decoupled photons, the
distribution remains Planckian and is still in the form of eq. (5.108).
However δT/T̄ really becomes a complicated function of (n,x, t) and
eq. (5.110) is not true anymore. We can avoid complications if we
admit one simple equation (deriving this equation would take a few
pages, but is not too difficult). First, we recall that at the level of
homogeneous cosmology, photons traveling from the LSS to us and
observed in a direction −n (where n is the direction of their momen-
tum) travel along a geodesic simply parametrized by r(τ) = (τ−τ0)n.
This trajectory starts from the coordinate r(τdec) = (τdec − τ0)n and
reaches us in straight line. In perturbed cosmology, we expect devia-
tions from this straight line, due to gravitational lensing effects (be-
tween the LSS and us, the photons travel through structures associ-
ated to gravitational potential maxima and minima). This is true, but
these deviations only matter for the computation of the CMB spec-
trum at order two in perturbations. At order one in perturbations, we
can still treat the geodesics as straight lines with r(τ) = (τ−τ0)n. Let
us go back to the photon distribution. The evolution of fγ(p,n,x, t)
is given by a complicated perturbed Boltzmann equation. However, if
we assume that photons are decoupled and if we integrate this Boltz-
mann equation along a given photon geodesic r(τ), we will find that

d

dτ

(

δT

T̄
(n,x, t) + φ(x, t)

)

=
∂

∂τ
(φ(x, t) + ψ(x, t)) , (5.111)

where d
dτ is the total derivative along the geodesic. We already as-

sumed that the metric perturbations φ and ψ are equal to each other.
This differential equation can be formally integrated between τdec and
τ0, giving:

[

δT

T̄
(n,x, t) + φ(x, t)

]LSS

O

=

∫ τ0

τdec

dτ 2φ̇([τ − τ0]n, τ) (5.112)

where LSS means: in the point of coordinates (x = [τdec − τ0]n, τ =
τdec), and O means: in the point of coordinates (x = ~o, τ = τ0).
Note that the integral over φ̇ is not equal to [φ̇]LSSO because φ̇ is only
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the partial derivative of φ with respect to τ . According to equation
(5.110), we can replace δT

T̄
in LSS by (14δγ−n.vγ). Finally, we notice

that δT
T̄

in the point 0 is the observable temperature anisotropy in
the direction −n (photons traveling in the direction n are seen by us
as coming from a direction −n). We get:

1

4
δγ |LSS−n.vγ |LSS+φ|LSS−

δT

T̄

∣

∣

∣

∣

obs

(−n)−φ|0 = 2

∫ τ0

τdec

dτ φ̇. (5.113)

After a transformation n −→ −n which makes the final result more read-
able, we get the following expression for the observable temperature anisotropy
in direction n:

δT

T̄

∣

∣

∣

∣

obs

(n) =
δT

T̄
([τdec − τ0]n, τdec) + φ([τdec − τ0]n, τdec)− φ(~o, τ0)

+n.vγ([τdec − τ0]n, τdec)

+2

∫ τ0

τdec

dτ φ̇([τ0 − τ ]n, τ) . (5.114)

On the right-hand side, the terms on the first line stand for the so-called
Sachs-Wolfe contribution to observable anisotropies. They account for the
fact that when we measure temperature fluctuations today, we see the
intrinsic temperature fluctuation on the last scattering surface, given by
1
4δγ |LSS, corrected by a “gravitational Doppler effect”: indeed, the total
amount by which the photon is redshifted between the last scattering sur-
face and now does not depend only on the ratio a0/adec, but also on the local
value of the gravitational potential at the emission and reception points.
This “gravitational Doppler effect” is also called the Sachs-Wolfe effect.
The second term is really important because φ([τ0−τdec]n, τdec) is different
in each point of the last scattering surface. Let us consider an overdensity
on the last scattering surface, i.e. a point where the intrinsic temperature
fluctuation is positive, δγ > 0 (this place is called a “hot spot”). This
overdensity is responsible for a gravitational potential well: φ < 0. When
climbing out of this gravitational potential well, photons will loose energy
and get redshifted. The second effect wins: 1

4δγ + φ < 0. This means that
a hot spot on the last scattering surface is actually seen as a cold spot in
the CMB anisotropy map. Conversely, photons coming from a cold spot
are blueshifted and appear as hot spots in the maps.

The third term on the right-hand side of eq. (5.114), −φ(~o, τ0), is ir-
relevant in practice, because it is the same for all observed direction: so,
it contributes to the average temperature (by a negligible fraction) and
observers automatically absorb it in T̄ .

The term in the second line stands for the usual Doppler effect, as we
already discussed.

The last term in the third line is called the integrated Sachs-Wolfe term.
It depends on the history of the photons along each line of sight. If the
gravitational potential was static, this term would vanish. The reason is
that when photons travel through maxima/minima of a static gravitational
potential, the redhsifts and blueshifts experienced along the trajectory can-
cel each other apart from a net effect φ|LSS − φ|0, already included in the
Sachs-Wolfe term. Instead, when the gravitational potential is non-static,
these redhsifts/blueshifts accumulate along the line of sight, and produce
extra temperature anisotropies called “secondary anisotropies” (since they
are not related to the last scattering surface).
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Overall shape of the temperature power spectrum Cl. The an-
gular correlation function F (θ) and the harmonic power spectrum Cl rep-
resent the two-point correlation function of δT/T̄ , respectively in real and
harmonic space. We showed already that for a given θ or a given l, they
receive mainly contributions from Fourier modes in the LSS, with a cor-
respondence between θ, l and k given by eq. (5.63). Looking at equation
(5.114) and neglecting for the moment the integrated Sachs-Wolfe term, we
see that F (θ) or Cl must be related to the Fourier power spectra of [ 14δγ+φ]
and of θγ , evaluated at the time τdec and for

k ∼ 2πadec
dA(zdec) θ

∼ 2adec l

dA(zdec)
. (5.115)

Actually, most representations of the CMB two-point correlation function
show the quantity l2Cl as a function of l. It is possible to show that l2Cl

is related in first approximation to the spectra

l2Cl ←→
{

k3〈|1
4
δγ + φ|2〉 , k3〈|θγ

k
〉
}

. (5.116)

The power spectrum of [ 14δγ + φ] at the time of radiation/matter equality
is given approximately by Eqs. (5.69, 5.71) with τ = τeq, neglecting the
decaying mode (C2 = 0) and adopting the same primordial spectrum as in
the previous section: 〈|φ(k, τi)|2〉 = Akn−4 = 〈|C1(k)|2〉/81, with a spectral
index n assumed to be close to one. For modes which did not enter into
the sound horizon at the time of equality (kcsτeq ≪ 1), the result is:

〈|1
4
δγ(k, τeq)+φ(k, τeq)|2〉 =

(

(− 1
2 + 1)

9

)2

〈|C1(k)|2〉 =
1

4
Akn−4 , (5.117)

while for modes which entered into the sound horizon before equality (kcsτeq ≫
1):

〈|1
4
δγ(k, τeq) + φ(k, τeq)|2〉 =

9

4
cos2(kcsτeq)Ak

n−4 . (5.118)

According these approximate solutions, k3〈| 14δγ + φ|2〉 is nearly flat for
kcsτeq ≪ 1 (if n ≃ 1), and behaves like cos2(kcsτeq) for kcsτeq ≫ 1. This
just reflects the fact that at equality, modes outside the sound horizon are
still frozen and given by the initial (nearly flat) spectrum, while modes
inside the sound horizon did have time to oscillate one, two, three or more
times between horizon crossing and equality. The number of oscillations
depends on the ratio between the sound horizon and the wavelength of the
mode.

The two-point correlation function of CMB anisotropies is related to
k3〈| 14δγ + φ|2〉 at decoupling, not at equality. We have already mentioned
that between equality and decoupling, δγ undergoes a rather complicated
evolution, with damped oscillations, depending very much on the baryon-
to-dark matter density ratio.

In addition, the observable anisotropies should be corrected by the
Doppler effect. For a harmonic oscillator, the velocity is out of phase with
the position. Here, similarly, the bulk velocity of the photon-baryon fluid
and hence the Doppler effect is out of phase with the oscillations of δγ and
φ. So, for values of k such that cos(kcsτeq) = 0, the Doppler effect is not
null, and the total observable spectrum of CMB anisotropies never reaches
zero.

The next effect to take into account is the integrated Sachs-Wolfe effect
(the last term in Eq. (5.114)), that depends on the time-variation of the
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gravitational potential φ̇ along the photon geodesics. We have seen that
during full matter domination, when the total energy density scales like
ρ̄ ∝ a−3, the potential φ is constant in time, both inside and outside the
Hubble radius: hence, the integrated Sachs-Wolfe effect cancels during this
stage. A non-zero effect can occur either at the beginning of matter domi-
nation, when radiation is not completely negligible and ρ̄ is not yet exactly
proportional to a−3, or at the end of matter domination if a cosmologi-
cal constant (or a spatial curvature term) starts to dominate today. The
first case leads to the so-called early integrated Sachs-Wolfe effect, which
is strong when equality takes place just before decoupling, and weak when
equality takes place a long time before decoupling. This effect is known to
enhance the first observable acoustic peak, i.e. the first oscillation of the
modes entering inside the sound horizon just before decoupling. The second
case (due to a cosmological constant or to curvature in the recent universe)
is called the late integrated Sachs-Wolfe effect, and is known to enhance
the anisotropy spectrum only for the largest observable wavelength, which
entered recently inside the Hubble radius.

The last important effect affecting the CMB temperature spectrum is
the so-called Silk damping effect, named after a famous English cosmologist.
It is related to the fact that decoupling is not instantaneous. The mean
free path of the photon does not go from zero to infinity instantaneously:
it increases progressively during recombination. Before decoupling, in the
tightly coupled photon-baryon fluid, the photons are distributed according
to the plasma temperature in each point. If decoupling was instantaneous,
the photons would travel freely from a point in the tightly-coupled fluid
to us; hence photons arriving from a direction n would carry information
about δT/T ([τ0 − τdec]n, τdec) (as we assumed throughout section 5.2.4).
In fact, after leaving thermal equilibrium, each photon can experience a
small number of interactions (elastic scatterings with electrons or baryons)
changing their trajectory. Hence, when they reach us, they carry informa-
tion not exactly about the plasma temperature in the point x = [τ0−τdec]n,
but in a slightly different point and direction. The “aberration angle” is of
the order of the mean free path of the photon around the time of decou-
pling divided by the angular diameter distance of the last scattering surface,
dA(zdec). On angles smaller than this characteristic angle, we cannot re-
lated the observed temperature anisotropies to the Fourier spectrum of the
fluid temperature at decoupling: hence, the angular correlation function
〈

δT
T̄
(n) δT

T̄
(n′)

〉

falls down and reaches asymptotically zero for small angu-
lar separation (same for Cl at large l). In summary, Silk damping produces
a cut-off in the observable spectrum of CMB anisotropies.

All these effects are taken into account when the CMB temperature
spectrum is computed numerically. In figure 5.6, we show a typical result
for standard cosmological parameters. The vertical axis corresponds to l2Cl

in some units. The horizontal axis corresponds to l, i.e. to the inverse of the
angular separation θ. On the figure, we can clearly see the plateau on large
scales (left) and the acoustic peaks on small scales (right). The plateau
is not exactly flat due to the late integrated Sachs-Wolfe effect. The first
peak is much higher than the other ones due to the early integrated Sachs-
Wolfe effect. The relative amplitude of the next peaks depends on many
parameters, in particular on the time of equality and on the baryon-to-dark
matter density ratio. Finally, the spectrum is suppressed exponentially on
small scales due to the Silk damping effect.

Parameter dependence of the temperature power spectrum.
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Figure 5.6: The CMB temperature power spectrum l2Cl as a function of
l ∼ π/θ, computed numerically for a simple cosmological model in a flat
universe, with Ωb/Ωcdm = 0.18, ΩΛ = 0.73 and n = 1.

Let us now summarize the effect of the main cosmological parameters on
the CMB temperature spectrum. For simplicity, we go on assuming a flat
universe and neglecting the effect of neutrinos. We also neglect the so-
called “reionisation of the universe” at late times. However, we leave the
possibility of a cosmological constant parametrized by ΩΛ and dominat-
ing the energy density of the recent universe. With such assumptions,
the cosmological model can be described with five parameters: the cos-
mological constant fraction ΩΛ, the total non-relativistic matter density
ωm = Ωmh

2 = (Ωb + Ωcdm)h2, the baryon density ωb = Ωbh
2, the primor-

dial spectrum amplitude A and finally its spectral index n. Since we assume
a flat universe, the reduced Hubble parameter h can be inferred from ωm

and ΩΛ:

1 = ΩΛ +Ωm = ΩΛ +
ωm

h2
⇒ h =

√

ωm

1− ΩΛ
. (5.119)

These parameters control various physical effects which are responsible for
the shape of the CMB temperature power spectrum:

1. The time of Radiation/Matter equality. In the above parame-
ter basis, the time of equality between ρ̄m and ρ̄r is fixed by ωm only,
since (aeq/a0) = ρ̄0r/ρ̄

0
m (the script 0 means “evaluated today”), and

ρ̄0r is fixed by the CMB temperature. A late equality implies less time
between equality and decoupling, and less damping for the acoustic
oscillations of modes entering inside the sound horizon during radi-
ation domination. It also implies more early integrated Sachs-Wolfe
effect. So, a later equality induces higher CMB peaks, especially for
the first one.
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2. The time of Matter/Λ equality. If the cosmological constant is
larger, equality between matter and Λ takes place earlier. During Λ
domination, the time-variation of the metric perturbations leads to
a late integrated Sachs-Wolfe effect, and the spectrum on the largest
angular scales is enhanced.

3. The angular scale of the sound horizon at recombination.
The characteristic scale of the oscillations in the CMB power spec-
trum is set by csτdec, or more precisely by the sound horizon ds(τrec)
at recombination. The time τrec is fixed by thermodynamics, but the
sound horizon is an integral over csdt/a(t) between 0 and τrec. This
integral depends on the time of equality, and on the baryon density at
late times (through cs). In addition, the actual observable quantity is
the angular scale of this sound horizon on the last scattering surface,
which is given by the ratio of ds(τrec) over the angular diameter dis-
tance dA(zrec). The latter also depends on h and ΩΛ. We conclude
that the observed angular scale of the peaks constrains a combination
of the three parameters ΩΛ, ωm and ωb.

4. The coupling between gravity and acoustic oscillations be-
tween the time of radiation-matter equality and photon de-
coupling. We have seen that between radiation-matter equality and
decoupling, the evolution of the metric perturbations can be driven
either by dark matter if ωb ≪ ωcdm, or by baryons if ωb ≫ ωcdm,
or by a combination of both if ωb ∼ ωcdm. This affects considerably
the evolution of acoustic oscillations during this intermediate stage:
the oscillation amplitude and equilibrium point are different if the
photon-baryon fluid behaves like is a test fluid or drives the evolution
of the gravitational potential. The main effect of increasing the ratio
ωb/ωcdm is to enhance the first peak and slightly suppress the second
one.

5. The amplitude of primordial perturbations, defined as the pa-
rameter A in Eq. (5.93), obviously fixes the global normalization of
the CMB spectrum .

6. The spectral index of primordial perturbations, defined as the
parameter n in Eq. (5.93), fixes the overall slope of the CMB spec-
trum.

In Fig. 5.7, we illustrate graphically the consequence of varying either
n, ωm, ΩΛ or ωb, while keeping all the other cosmological parameters fixed.
Increasing n just changes the overall slope of the power spectrum. When
we decrease ωm, the relevant effects are (1) and (3): equality is postponed,
boosting the CMB peaks and especially the first one; simultaneously, there
is a tiny horizontal shift of the spectrum corresponding (smaller angular
scale of the sound horizon at recombination). When we increase ΩΛ, we
can see the effects (2) and (3): the spectrum increase on the largest angular
scales (left of the figure), and the spectrum is shifted to the left (larger
angular scale of the sound horizon at recombination). When ωb is increased,
the effects (3) and (4) are taking place: the first CMB peak increases,
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while the second one decreases slightly; the scale of the peaks is also shifted
(smaller angular scale of the sound horizon at recombination).

We have seen that A and n have very specific effects, while (ΩΛ, ωm,
ωb) have intricate effects. Nevertheless, since there are six physical effects
for five parameters, it is in principle possible to measure all of them with
CMB data, assuming a flat universe.
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Figure 5.7: The red solid line shows the same reference CMB temperature
spectrum as in the previous figure. The other lines show the effect of varying
one of the following quantities: n; ωm (and the time of radiation-matter
equality τeq); ωΛ (and the time of matter-Λ equality); and finally ωb (and
the baryon-to-dark matter density ratio). The corresponding effects are
described in the text.

Finally, let us mention the consequences of varying the spatial curva-
ture. We know that the curvature parameter has a crucial effect on the
angular diameter distance – redshift relation. Hence, we expect a change
in Ωk to change the correspondence between Fourier modes on the last
scattering surface and angles of observation today: this should correspond
in a horizontal shift of the CMB temperature spectrum (and of the scale
of all acoustic peaks). Also, if in the Friedmann equation the curvature
term starts to dominate over the matter density term in the recent uni-
verse, the metric perturbation φ is not anymore constant at late time (the
explanation is the same as for a cosmological constant: the effective mass
square in Eq. (5.29) does not vanish as long as the expansion is not lead
by the ρ̄m ∝ a−3 term, so φ decays). So, in case of spatial curvature, we
also expect the late integrated Sachs-Wolfe effect to modify the large-scale
CMB spectrum. These two effects are illustrated in figure 5.8.
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Figure 5.8: The red solid line shows the same reference CMB temperature
spectrum as in the previous figure. The other lines show the effect of taking
Ωk = 0.1 (positively curved universe) or Ωk = −0.1 (negatively curved
universe), all other parameters being fixed. The corresponding effects are
described in the text.
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Chapter 6

Cosmological observations

According to the previous sections, it is reasonable to assume that the
cosmological scenario can be parametrized by:

• the total matter density ωm and the baryon density ωb (the dark
matter density is then given by ωcdm = ωm − ωb).

• a possible cosmological constant density fraction ΩΛ and spatial cur-
vature density fraction Ωk.

• the primordial spectrum amplitude A and spectral index n (see Eq. (5.93)).

The total radiation density is not a free parameter, since the photon density
is fixed by the CMB temperature today:

ωγ ≡ Ωγh
2

=
ρ̄0γ
ρ̄0c
h2

=

(

π2

15
T 4
0

)(

8πG

3H2
0

)

h2

=
8π3T 4

0

45(H0/h)2M2
P

, (6.1)

while the neutrino density relative to that of photons is fixed by the assump-
tion that each of the three neutrino families has a Planckian distribution
with Tν = (4/11)1/3T , so that:

ωr ≡ ωγ + ων

=

[

π2

15
T 4
0 + 3× 7

8
× π2

15
T 4
ν0

](

8πG

3H2
0

)

h2

=

[

1 + 3× 7

8
×
(

4

11

)4/3
]

ωγ

∼ 4× 10−5 for T0 = 2.726 K . (6.2)

For Ωk = 0, this model is usually called “flat ΛCDM” or just “ΛCDM”,
since besides baryons and radiation it contains two major ingredients: cold
dark matter (CDM) and a cosmological constant Λ. We see that ΛCDM has
five independent free parameters, e.g. {ωm, ωb,ΩΛ, A, n}. The same model
with a sixth independent parameter Ωk describing positive (resp. negative)
curvature is usually called “closed ΛCDM” (resp. “open ΛCDM”).
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No. Reaction Type No. Reaction Type

1 n −→ p weak 22 6Li + p −→ γ + 7Be (p,γ)

2 3H → ν̄e + e− + 3He weak 23 6Li + p −→
3He + 4He 3He Pickup

3 8Li → ν̄e + e− + 2 4He weak 24 7Li + p −→
4He + 4He 4He Pickup

4 12B → ν̄e + e− + 12C weak 24 bis 7Li + p −→ γ + 4He + 4He (p,γ)

5 14C → ν̄e + e− + 14N weak 25 4He + 2H −→ γ + 6Li (d,γ)

6 8B → νe + e+ + 2 4He weak 26 4He + 3H −→ γ + 7Li (t,γ)

7 11C → νe + e+ + 11B weak 27 4He + 3He −→ γ + 7Be (3He,γ)

8 12N → νe + e+ + 12C weak 28 2H + 2H −→ n + 3He 2H Strip.

9 13N → νe + e+ + 13C weak 29 2H + 2H −→ p + 3H 2H Strip.

10 14O → νe + e+ + 14N weak 30 3H + 2H −→ n + 4He 2H Strip.

11 15O → νe + e+ + 15N weak 31 3He + 2H −→ p + 4He 2H Strip.

12 p + n −→ γ + 2H (n,γ) 32 3He + 3He −→ p + p + 4He (3He,2p)

13 2H + n −→ γ +3H (n,γ) 33 7Li + 2H −→ n + 4He + 4He (d,n α)

14 3He + n −→ γ + 4He (n,γ) 34 7Be + 2H −→ p + 4He + 4He (d,p α)

15 6Li + n −→ γ + 7Li (n,γ) 35 3He + 3H −→ γ + 6Li (t,γ)

16 3He + n −→ p + 3H charge ex. 36 6Li + 2H −→ n + 7Be 2H Strip.

17 7Be + n −→ p + 7Li charge ex. 37 6Li + 2H −→ p + 7Li 2H Strip.

18 6Li + n −→
3H + 4He 3H Pickup 38 3He + 3H −→

2H + 4He (3H,d)

19 7Be + n −→
4He + 4He 4He Pickup 39 3H + 3H −→ n + n + 4He (t,n n)

20 2H + p −→ γ + 3He (p,γ) 40 3He + 3H −→ p + n + 4He (t,n p)

21 3H + p −→ γ + 4He (p,γ)

Table 6.1: The first forty reactions used in the nucleosynthesis code
partenope. Table taken from [arXiv:0705.0290] by Ofelia Pisanti et al.

The questions to address now are: is this ΛCDM model able to explain
all cosmological observations (with ot without spatial curvature)? If yes,
does the data provide a measurement of all the above parameters? If not,
what kind of new physical ingredient is needed? We will review here the
main cosmological observations and their implications for cosmological pa-
rameters. The order of the next sections corresponds more or less to the
order in which each observations started to play a crucial role for measuring
cosmological parameters over the last twenty years.

6.1 Abundance of primordial elements

In sections 3.3.5, we have seen that the theory of nucleosynthesis can predict
the abundance of light elements formed in the early universe, when the
energy density was of order ρ ∼ (1MeV)4. After nucleosynthesis, there are
no more nuclear reactions in the universe, excepted in the core of stars.
So, today, in regions of the universe which were never filled by matter
ejected from stars, the proportion of light elements is still the same as it
was just after nucleosynthesis. Fortunately, the universe contains clouds of
gas fullfilling this criteria, and the abundance of deuterium, helium, etc.
can be measured in such regions (e.g. by spectroscopy). The results can be
directly compared with theoretical predictions.

The predictions presented in this course were based on a very simplistic
description of nucleosynthesis. Precise predictions arise from codes simulat-
ing the evolution of a system of many different reactions. Table 6.1 shows,
for instance, the first 40 reactions used in the public code parthenope

(http://parthenope.na.infn.it/). In the section 3.3.5, we only studied
the reactions called 1 and 12 in this table.

Numerical simulation of nucleosynthesis accurately predict all relative
abundances as a function of the only free parameter in the theory, the
baryon density. We remember that the temperature at which light elements
start forming is fixed by equation (3.56) and depends on ηb ≡ nb/nγ ∼
10−10, which precise value is given by ηb = 5.5 × 10−10(ωb/0.020) (note
that ηb is defined at any time between positron annihilation and today: it
is constant in this range). Hence, relative abundances depend on ωb, as al-
ready mentioned for helium in Eq. (3.70). Figure 6.1 shows the dependence
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of the abundance of 4He, D, 3He and 7Li as a function of ηb.

Figure 6.1: The nucleosynthesis-predicted primordial abundances of D, 3He,
7Li (relative to hydrogen by number), and the 4He mass fraction (YP ), as
functions of the baryon abundance parameter η10 ≡ 1010ηb. The widths
of the bands reflect the uncertainties in the nuclear and weak interaction
rates. Plot taken from Int.J.Mod.Phys. E15 (2006) 1-36 [arXiv:astro-
ph/0511534v1] by Gary Steigman.

Current observations (mainly of 4He and D) show that

ωb ≡ Ωbh
2 = 0.020± 0.002. (6.3)

Hence, for h = 0.7, the baryon fraction is of the order of Ωb ∼ 0.04: ap-
proximately four percent of the universe density is due to ordinary matter.
This is already more than the sum of all luminous matter, which represents
one per cent: so, 75% of ordinary matter is not even visible.

Note that if ωr was a free parameter, the outcome of nucleosynthesis
would also depend crucially on ωr. So, nucleosynthesis can also be used as
a tool for testing the fact that Eq. (6.2) is correct. It turns out to be the
case: primordial element abundances provide a measurement of ωr precise
at the 10% level, and perfectly compatible with Eq. (6.2).
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6.2 Age of the universe

The age of the universe can be conveniently computed once the function
H(a)/H0 or H(z)/H0 is known. This function follows from the Friedmann
equation divided by H2

0 :

H2

H2
0

=
ρ̄tot
ρ̄c
− k

a2H2
0

= Ωr

(a0
a

)4

+Ωm

(a0
a

)3

− Ωk

(a0
a

)2

+ΩΛ (6.4)

= Ωr (1 + z)
4
+Ωm (1 + z)

3 − Ωk (1 + z)
2
+ΩΛ , (6.5)

with the constraint that Ωr + Ωm − Ωk + ΩΛ = 1 by construction. Since
H = da/(adt), we can write:

dt =
da

aH
= − dz

(1 + z)H
. (6.6)

Hence, the age of the universe can be computed from the integral

t =

∫ a0

0

da

aH
= H−1

0

∫ a0

0

da

a

(

H0

H(a)

)

, (6.7)

or equivalently from

t =

∫ ∞

0

dz

(1 + z)H
= H−1

0

∫ ∞

0

dz

1 + z

(

H0

H(z)

)

. (6.8)

This integral converges with respect to the boundary corresponding to the
initial singularity, a −→ 0 or z −→ ∞. Actually, it is easy to show that
the radiation dominated period gives a negligible contribution to the age
of the universe, hence the term proportional to Ωr can be omitted in the
integral. If the universe is matter-dominated today (ΩΛ = Ωk = 0), then
Ωm = 1 and the age of the universe is simply given by:

t = H−1
0

∫ ∞

0

dz (1 + z)−5/2 =
2

3H0
= 6.52h−1Gyr , (6.9)

where 1 Gyr ≡ 1 billion years. If ΩΛ > 0 and/or Ωk < 0 (negatively curved
universe), the ratio H(z)/H0 decreases with respect to the ΩΛ = Ωk = 0
case for all values of z corresponding to Λ or curvature domination. For
Ωk > 0 (closed universe), it increases. Hence, the age of the universe in-
creases with respect to 6.52h−1Gyr if ΩΛ > 0 and/or Ωk < 0, and decreases
if Ωk > 0.

The age of of a few specific object in the universe can be evaluated with
a number of techniques, e.g. by nucleochronology (studying the radioactive
decay of isotopes inside an object, exactly like in the 14C method used in
archeology); or by measuring the cooling of stars in their final state, called
“white dwarfs”, and comparing with the mean evolution curve of white
dwarfs; etc. If the age of an object is found to be extremely large, it provides
a lower bound on the age of the universe itself. Current observations can
set a reliable lower bound on the age of the universe: t > 11Gyr. This
is incompatible with the matter-dominated universe of Eq. (6.9) unless
h < 0.59, while observations of the Hubble flow prefer h ∼ 0.7. Hence,
these observations provide a strong hint that that the universe is either
negatively curved or Λ–dominated today. This “age problem” was already
known in the 90’s.
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6.3 Luminosity of Type Ia supernovae

The evidence for a non–flat universe and/or a non–zero cosmological con-
stant has increased considerably in 1998, when two independent groups
studied the apparent luminosity of distant type Ia supernovae (SNIa). For
this type of supernovae, astronomers believe that there is a simple relation
between the absolute magnitude and the luminosity decay rate. In other
words, by studying the rise and fall of the luminosity curve during a few
weeks, one can deduce the absolute magnitude of a given SNIa. Therefore,
it can be used in the same way as cepheids, as a probe of the luminosity
distance – redshift relation. In addition, supernovae are much brighter that
cepheids, and can be observed at much larger distances (until redshifts of
order one or two). While observable cepheids only probe short distances,
where the luminosity distance – redshift relation only gives the Hubble
law (the proportionality between distance and redshift), the most distant
observable SNIa’s are in the region where general relativity corrections are
important: so, they can provide a measurement of the scale factor evolution
(see section 2.2.2).

We note first that the observation of nearby cepheids and supernovae
gives the following estimate of the reduced Hubble parameter:

h = 0.742± 0.036 (6.10)

at the 68% confidence level (Riess et al. [E-print: 0905.0695]).
On figure 6.2, the various curves represent the effective magnitude–

redshift relation, computed for various choices of ΩM and ΩΛ. The effective
magnitude mB plotted here is essentially equivalent to the luminosity dis-
tance dL, since it is proportional to log[dL] plus a constant. For a given
value of H0, all the curves are asymptotically equal at short distance. Sig-
nificant differences show up only at redshifts z > 0.2. Each red data point
corresponds to a single supernovae in the first precise data set: that of the
“Supernovae Cosmology Project”, released in 1998. Even if it is not very
clear visually from the figure, a detailed statistical analysis of this data re-
vealed that a flat matter–dominated universe (with Ωm = 1, ΩΛ = 0) was
excluded. This result has been confirmed by various more recent data sets.
The top panel of figure 6.3 shows the luminosity distance – redshift diagram
for the SNLS data set released in 2005. The corresponding constraints on
Ωm and ΩΛ are displayed in Figure 6.4, and summarized by:

(Ωm − ΩΛ,Ωm +ΩΛ) = (−0.49± 0.12, 1.11± 0.52) . (6.11)

Hence, supernovae data strongly suggest the existence of a cosmological
constant today (ΩΛ > 0). In fact, the small luminosity of high-redshift
supernovae suggests that the universe is currently in accelerated expansion.
The supernovae data does not say whether the parameter Ωk is negligible,
positive or negative.

6.4 CMB temperature anisotropies

The order of magnitude of CMB anisotropies was predicted many years
before being measured. By extrapolating from the present inhomogeneous
structure back to the time of decoupling, many cosmologists in the 80’s
expected δT/T̄ to be at least of order 10−6 – otherwise, clusters of galaxies
could not have formed today.

Many experiments were devoted to the detection of these anisotropies.
The first successful one was COBE-DMR, an American satellite carrying
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Figure 6.2: The results published by the “Supernovae Cosmology Project”
in 1998 (see Perlmutter et al., Astrophys.J. 517 (1999) 565-586). The vari-
ous curves represent the effective magnitude–redshift relation, computed for
various choices of Ωm and ΩΛ. This plot is equivalent to a luminosity dis-
tance – redshift relation (effective magnitude and luminosity distance can
be related in a straightforward way: mB ∝ (log[dL]+cst)). The solid black
curves account for three examples of a universe with positive/null/negative
curvature and no cosmological constant. The dashed blue curves corre-
spond to three spatially flat universes with different values of ΩΛ. For a
given value of H0, all the curves are asymptotically equal at short distance,
probing only the Hubble law. The yellow points are short–distance SNIa’s:
we can check that they are approximately aligned. The red points, at red-
shifts between 0.2 and 0.9, show that distant supernovae are too faint to
be compatible with a flat matter–dominated universe (Ωm,ΩΛ) =(1,0).
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an interferometer of exquisite sensitivity. In 1992, COBE mapped the
anisotropies all over the sky, and found an average amplitude δT/T̄ ∼ 10−5

(see figure 6.5). This was in perfect agreement with the theoretical pre-
dictions – another big success for cosmology. The COBE experiment had
an angular resolution of a few degrees: so, anisotropies seen under one de-
gree or less were smoothed by the detector. In a Fourier decomposition, it
means that COBE could only measure the spectrum of wavelengths larger
than the sound horizon at decoupling. So, it was not probing the acous-
tic oscillations, but only the flat plateau. Hence, after 1992, considerable
efforts were devoted to the design of new experiments with better angular
resolution, in order to probe smaller wavelengths, check the existence of the
acoustic peaks, compare them with theoretical predictions and measure the
related cosmological parameters.

For instance, some decisive progresses were made with Boomerang, a
US–Italian–Canadian balloon, carrying some detectors called bolometers.
In 2001, Boomerang published the map of figure 6.6. It focuses on a small
patch of the sky, but with much better resolution than COBE (a few arc–
minutes). The Fourier decomposition of the Boomerang map clearly showed
the first three acoustic peaks (see figure 6.7). Let us recall that the angular
size of the first peak probes the angular diameter distance at the redshift of
photon decoupling, and depends heavily on the spatial curvature parameter
Ωk. The position of the first peak measured by Boomerang was perfectly
consistent with Ωk = 0. Boomerang brought the first convincing arguments
in favor of an exactly flat or at least nearly flat universe. The combination
of Boomerang data with supernovae observations started to show that the
preferred values of Ωm and ΩΛ were around 0.3 and 0.7 respectively.

At the beginning of 2003, the NASA satellite WMAP published a full-
sky CMB map shown in the lower part of figure 6.8. This was the second
one after that of COBE, with a resolution increased by a factor 30. The
corresponding temperature spectrum is shown in figure 6.9. It is in surpris-
ingly good agreement with the predictions of a flat ΛCDM model. Since
then, WMAP has improved its measurements by accumulating more years
of observations, while ground-based experiments have produced some maps
of small regions of the sky only, but with better resolution than WMAP,
allowing to compute the power spectrum on smaller angular scales. Figure
6.10 shows a compilation of recent data (although all the latest data are
not included here). Acoustic peaks are now clearly visible till the fifth one.

There are still many CMB experiments going on. In May 2009, the
European satellite planck has been be launched. It is currently collecting
data. planck is expected to perform the best possible measurement of the
CMB temperature anisotropies, with such precision that most cosmological
parameters should be measured at the per cent level.

At the moment, the position of the first acoustic peak combined with
SNLS supernovae data provides the following constraint on the curvature
of the universe: Ωk = 0.011± 0.012. Hence, the spatial curvature is either
null or tiny. Given that this measurement is compatible with zero, it is
reasonable to make the assumption that Ωk = 0, since this is easier to
explain theoretically than a very small value of the order of 10−2.

Assuming that Ωk = 0, the combination of all CMB experiments pro-
vides the following constraints on the parameters of the ΛCDM model:

ωm = 0.135± 0.007

ωb = 0.0227± 0.0006

ΩΛ = 0.74± 0.03
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n = 0.963± 0.015 (6.12)

(we don’t report here the measurement of the primordial amplitude A,
which is not very interesting by itself). From these estimates, one can
derive some bounds on the reduced Hubble parameter: h = 0.72 ± 0.03,
and on the age of the universe: t0 = 13.6 ± 0.1 Gyr. These results are
in remarkable agreement with other independent techniques. For instance,
the measurement of h is perfectly consistent with measurements of the
same parameters using Hubble diagrams. But the most striking feature is
probably the remarkable agreement between the values of ωb inferred from
the CMB and from primordial element abundances. These are completely
independent techniques for probing the baryon density in the universe: one
relies on nuclear physics when the universe had a temperature of ∼1 MeV,
the other on relativistic fluid mechanics at temperature of the order of
∼1 eV. The perfect overlap between the two constraints indicates that our
knowledge of the universe is impressively good, at least during the epoch
between t ∼ 1 s and t ∼ 100 000 yr. Let us finally emphasize that CMB
observations alone bring some very strong evidence in favor of the existence
of dark matter: from the above bounds, one can infer that

ωcdm = 0.110± 0.006 . (6.13)

6.5 Galaxy correlation function

Over the past decades, astronomers could build some very large three-
dimensional maps of the galaxy distribution – on larger scales than the
scale of non-linearity. On figure 6.11, we can see the galaxy distribution re-
constructed by the SDSS collaboration within a thin slice of the surrounding
universe. We can see that the galaxy distribution looks really homogeneous
on large scales. Actually, the average density seems to decrease slightly at
large z, but this is simply a so-called selection effect: since the telescope is
limited in sensitivity, it can see most nearby galaxies, and only a selection
of the brightest remote galaxies. Observers know how to model this effect,
and how to correct it when computing the luminous galactic matter power
spectrum Plgm(k).

On figure 6.12, we see the Fourier spectrum reconstructed from the map
of figure 6.11 for the same two galaxy samples, which have different bias
factors (and hence different normalisations of Plgm(k)). The red line shows
the theoretical prediction for the ΛCDM model which gives the best fit
to WMAP data, for two adjusted values of the bias. The shape of the
theoretical P (k) agrees very well with the observed shapes. In the LRG
power spectrum, the first data points (with the smallest values of k) start
to probe the maximum in P (k) (corresponding to scales entering inside the
Hubble radius around the time of matter–radiation equality).

On the theoretical curves, the baryon acoustic oscillations are clearly
visible. Are they visible also in the data? The answer is yes, but this is
seen more clearly in figure 6.13 where the same data points are plotted with
different units.

Since the baryon acoustic oscillations (called usually BAO) are observ-
able and corresponds to a known comoving scale (that of the sound horizon
at the time of photon decoupling), we can use it as a standard ruler. Not
entering into details, let us mention that it is possible to select all galaxies
with a given approximate redshift, and for these galaxies, to measure the
power spectrum in angular space (i.e., as a function of angular separation
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θ), exactly like for CMB anisotropies. This angular power spectrum has a
clear imprint of BAO: hence, we can measure the angle under which BAO
are seen for a given redshift. This technique is similar in principle to the
measurement of the angular scale of the first CMB peak, but it applies
to much smaller redshifts. Hence, by observing BAO, people are able to
map the angular diameter–redshift relation for small redshifts (typically
smaller than one). This information is complementary to that of type Ia
supernovae, and tends to be more precise. This technique has emerged
only recently (see Astrophys.J.633:560-574,2005 [astro-ph/0501171] by D.
Eisenstein et al.) and provides very good complementary constraints, in
particular on ΩΛ.

We don’t provide here detailed bounds on cosmological parameters from
these two techniques (measurement of the galaxy power spectrum, and of
the scale of BAO), but they are in very good agreement with the previously
mentioned results from CMB experiments. They confirm the validity of
the ΛCDM scenario with the parameters listed in Eqs. (6.12), (6.13). This
ΛCDM model is often called the concordance model.

6.6 Other observations not discussed here

For concision, we will not address in this course other techniques which
might become particularly important in the future: the study of galaxy
cluster abundances as a function of redshift; surveys of peculiar velocities;
analyses of Lyman-α forests in the spectrum of quasars; galaxy weak lensing
and cosmic shear (discussed in the course of Pierre Salati); CMB weak
lensing; the study of the 21cm absorption line in gas clouds; etc.
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Figure 6.3: (Top panel) Same kind of luminosity distance – redshift diagram
as in the previous figure, but for more recent data published by the SNLS
collaboration in 2005. (Lower panel) Same data points and errors, divided
by the theoretical prediction for the best fit ΛCDM model. Plot taken from
Astronomy and Astrophysics 447: 31-48, 2006 [e-Print: astro-ph/0510447]
by Pierre Astier et al.
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Figure 6.4: Contours at 68.3%, 95.5% and 99.7% confidence levels in the
(Ωm, ΩΛ) plane from the SNLS supernovae data (solid contours), the SDSS
baryon acoustic oscillations (see section 6.5, dotted lines), and the joint
confidence contours (dashed lines). These plots are all assuming a ΛCDM
cosmology, as we are doing in this chapter. Plot taken from Astronomy
and Astrophysics 447: 31-48, 2006 [e-Print: astro-ph/0510447] by Pierre
Astier et al.
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Figure 6.5: The first genuine “picture of the universe” at the time of de-
coupling, 370 000 years after the initial singularity, and 13.6 billion years
before the present epoch. Each blue (resp. red) spot corresponds to a
slightly colder (resp. warmer) region of the universe at that time. This
map, obtained by the American satellite COBE in 1994 (see C. L. Bennett
et al., Astrophys.J. 464 (1996) L1-L4), covers the entire sky: so, it pictures
a huge sphere centered on us (on the picture, the sphere has been projected
onto an ellipse, where the upper and lower points represent the direction
of the poles of the Milky way). Away from the central red stripe, which
corresponds to photons emitted from our own galaxy, the fluctuations are
only of order 10−5 with respect to the average value T0 = 2.728 K. They
are the “seeds” for the present structure of the universe: each red spot
corresponds to a small over-density of photons and baryons at the time of
decoupling, that has been enhanced later, leading to galaxies and clusters
of galaxies today.
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Figure 6.6: The map of CMB anisotropies obtained by the balloon ex-
periment Boomerang in 2001 (see S. Masi et al., Prog.Part.Nucl.Phys. 48
(2002) 243-261). Unlike COBE, Boomerang only analyzed a small patch of
the sky, but with a much better angular resolution of a few arc–minutes.
The dark (resp. light) spots correspond to colder (resp. warmer) regions.
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Figure 6.7: The power spectrum of the Boomerang map reveals the struc-
ture of the first three acoustic oscillations (see C. B. Netterfield et al.,
Astrophys.J. 571 (2002) 604-614). These data points account for the tem-
perature power spectrum 〈|δT/T |2〉 in (µK)2, as a function of a number l
which is equivalent to 1/θ in some units.
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Figure 6.8: (Bottom) The full-sky map of CMB anisotropies obtained
by the satellite WMAP in 2003 (see C. L. Bennett et al., Astro-
phys.J.Suppl. 148 (2003) 1). A higher-resolution image is available at
http://lambda.gsfc.nasa.gov/product/map/. The blue (resp. red)
spots correspond to colder (resp. warmer) regions. The central red stripe
in the middle is the foreground contamination from the Milky Way. (Top)
The COBE map, shown again for comparison. The resolution of WMAP
is 30 times better than that of COBE, but one can easily see that on large
angular scales the two experiments reveal the same structure.
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Figure 6.9: Power spectrum indicated by WMAP, perfectly fitted by the
theoretical prediction of a ΛCDM model. The black dots show the WMAP
measurements (see C. L. Bennett et al., Astrophys.J.Suppl. 148 (2003) 1).
The error bars are so small that they are difficult to distinguish from the
dots. The blue and green dots show some complementary measurements
from other experiments dedicated to smaller angular scales. The red curve
is one of the best theoretical fits.
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Figure 6.10: Recent results on the temperature spectrum from WMAP
(large angular scales), Boomerang (intermediate angular scales) and
ACBAR (small angular scales), perfectly fitted by the theoretical pre-
dictions of a ΛCDM model. The power spectrum is plotted as a func-
tion of a number l which is equivalent to 1/θ in some units. Taken from
arXiv:0801.1491 [astro-ph] by C. L. Reichardt et al.
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Figure 6.11: The distribution of galaxies in a thin slice of the neighboring
universe centered on us, obtained by the Sloan Digital Sky Survey (SDSS).
The radial coordinate is the comoving distance in units of h−1Mpc. The
four solid red circles correspond to the redshifts z = 0.155, 0.3, 0.38, 0.474.
Each point represents a galaxy belonging to one of two different samples:
the sample called “main galaxies” by the SDSS group (green points) and
that called “Luminous Red Galaxies” (LRG, black dots), which extends
further since it represents a selection of very bright galaxies only. Taken
from Phys.Rev.D74:123507,2006 [astro-ph/0608632] by M. Tegmark et al.
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Figure 6.12: Measured power spectra for the galaxies of figure 6.11. The
upper points are for luminous red galaxies, the lower one for main galaxies.
The two samples don’t have necessarily the same light-to-mass bias: this is
why the data points indicate two different normalisations of the luminous
galactic matter power spectrum Plgm(k). The solid curves correspond to
the theoretical prediction for the ΛCDM model best-fitting WMAP3 data,
normalized to a light-to-mass bias b = 1.9 (top) and b = 1.1 (bottom)
relative to the z = 0 matter power P (k). The dashed curves show an
estimate of the nonlinear corrections on small scales, but this aspect is
beyond the scope of this course. Note however that the onset of nonlinear
corrections is clearly visible for k ≥ 0.09h/Mpc (vertical line). Taken from
Phys.Rev.D74:123507,2006 [astro-ph/0608632] by M. Tegmark et al.
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Figure 6.13: Same as 6.12, but multiplied by k and plotted with a linear
vertical axis to more clearly illustrate the observation of at least the first
baryon acoustic oscillation. Taken from Phys.Rev.D74:123507,2006 [astro-
ph/0608632] by M. Tegmark et al.



Chapter 7

Inflation

7.1 Motivations for inflation

7.1.1 Flatness problem

Today, Ωk is measured to be at most of order 10−2, possibly much smaller,
while Ωr ≡ ρr/ρcrit ≃ ρr/(ρΛ + ρm) is of order 10−4. Since ρeffk scales
like a−2, while radiation scales like a−4, the hierarchy between ρr and ρeffk
increases as we go back in time. If ti is some initial time, t0 is the time
today, and we assume for simplicity that the ratio ρeffk /ρr is at most equal
to one today, we obtain

ρeffk (ti)

ρr(ti)
≤
(

a(ti)

a(t0)

)2

=

(

ρr(t0)

ρr(ti)

)1/2

. (7.1)

Today, the radiation energy density ρr(t0) is of the order of (10−4eV)4. If
the early universe reached the order of the Planck density (1018GeV)4 at
the Planck time tP , then at that time the ratio was

ρeffk (tP )

ρr(tP )
=

(10−4eV)2

(1018GeV)2
∼ 10−62 . (7.2)

Even if the universe never reached such an energy, the hierarchy was already
huge when ρr was of order, for instance, of (1 TeV)4.

If we try to build a mechanism for the birth of the classical universe
(when it emerges from a quantum gravity phase), we will be confronted
to the problem of predicting an initial order of magnitude for the various
terms in the Friedmann equation: matter, spatial curvature and expansion
rate. The Friedmann equation gives a relation between the three, but the
question of the relative amplitude of the spatial curvature with respect to
the total matter energy density, i.e. of the hierarchy between ρeffk and ρr,
is an open question. We could argue that the most natural assumption
is to start from contributions sharing the same order of magnitude; this
is actually what one would expect from random initial conditions at the
end of a quantum gravity stage. The flatness problem can therefore be
formulated as: why should we start from initial conditions in the very early
universe such that ρeffk should be fine-tuned to a fraction 10−62 of the total
energy density in the universe?

The whole problem comes from the fact that the ratio ρeffk /ρr (or more
generally Ωk ≡ ρeffk /ρcrit) increases with time: i.e., a flat universe is an
unstable solution of the Friedmann equation. Is this a fatality, or can we
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choose a framework in which the flat universe would become an attractor
solution? The answer to this question is yes, even in the context of ordinary
general relativity. We noticed earlier that |Ωk| is proportional to (aH)−2,
i.e. to ȧ−2. So, as long as the expansion is decelerated, ȧ decreases and
|Ωk| increases. If instead the expansion is accelerated, ȧ increases and |Ωk|
decreases: the curvature is diluted and the universe becomes asymptotically
flat.

Inflation is precisely defined as an initial stage during which the expan-
sion is accelerated. One of the motivations for inflation is simply that if
this stage is long enough, |Ωk| will be driven extremely close to zero, in
such way that the evolution between the end of inflation and today does
not allow to reach again |Ωk| ∼ 1.

We can search for the minimal quantity of inflation needed for solving
the flatness problem. For addressing this issue, we should study a cosmolog-
ical scenario where inflation takes place between times ti and tf such that
|Ωk| ∼ 1 at ti, and |Ωk| ∼ 1 again today at t0. Let us compute the duration
of inflation in this model. This will give us an absolute lower bound on the
needed amount of inflation in the general case. Indeed, we could assume
|Ωk| ≫ 1 at ti (since there could be a long stage of decelerated expansion
before inflation); this would just require more inflation. Similarly, we could
assume |Ωk| ≪ 1 today at t0, requiring again more inflation.

So, we assume that between ti and tf the scale factor grows from ai to
af , and for simplicity we will assume that the expansion is exactly De Sitter
(i.e., exponential) with a constant Hubble rate Hi, so that the total density
ρinf is constant between ti and tf . We assume that at the end of inflation
all the energy ρinf is converted into a radiation energy ρr, which decreases
like a−4 between tf and t0. Finally, we assume that ρeffk (which scales like
a−2) is equal to ρinf at ti and to ρr at t0. With such assumptions, we can
write

ρeffk (a0)

ρeffk (ai)
=

(

ai
a0

)2

=
ρr(a0)

ρinf(ai)
=

ρr(a0)

ρinf(af )
=
ρr(a0)

ρr(af )
=

(

af
a0

)4

(7.3)

and we finally obtain the relation

af
ai

=
a0
af

. (7.4)

So, the condition for the minimal duration of inflation reads

af
ai
≥ a0
af

, (7.5)

which can be summarized in one sentence: there should be as much expan-
sion during inflation as after inflation. A convenient measure of expansion
is the so-called e-fold number defined as

N ≡ ln a . (7.6)

The scale factor is physically meaningful up to a normalization constant,
so the e-fold number is defined modulo a choice of origin. The amount of
expansion between two times t1 and t2 is specified by the number of e-folds
∆N = N2 − N1 = ln(a2/a1). So, the condition on the absolute minimal
duration of inflation reads

(Nf −Ni) ≥ (N0 −Nf ) (7.7)

i.e., the number of inflationary e-folds should be greater or equal to the
number of post-inflationary e-folds ∆N ≡ N0 − Nf . There is no upper
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bound on (Nf − Ni): for solving the flatness problem, inflation could be
arbitrarily long.

It is easy to compute ∆N as a function of the energy density at the
end of inflation, ρr(af ). We know that today ρr(a0) is of the order of
(10−4eV)4, and we will see in section 7.3.2 that the inflationary energy
scale is at most of the order of (1016GeV)4, otherwise current observations
of CMB anisotropies would have detected primordial gravitational waves.
This gives

∆N = ln
a0
af

= ln

(

ρr(af )

ρr(a0)

)1/4

≤ ln 1029 ∼ 67 . (7.8)

We conclude that if inflation takes place around the 1016GeV scale, it should
last for a minimum of 67 e-folds. If it takes place at lower energy, the con-
dition is weaker. The lowest scale for inflation considered in the literature
(in order not to disturb too much the predictions of the standard inflation-
ary scenario) is of the order of 1 TeV. In this extreme case, the number of
post-inflationary e-folds would be reduced to

∆N ∼ ln 1016 ∼ 37 (7.9)

and the flatness problem can be solved with only 37 e-folds of inflation.

7.1.2 Horizon problem

We recall that the causal horizon dH(t1, t2) is defined as the physical dis-
tance at time t2 covered by a particle emitted at time t1 and travelling at
the speed of light. If the origin of spherical comobile coordinates is chosen
to coincide with the point of emission, the physical distance at time t2 can
be computed by integrating over small distance elements dl between the
origin and the position r2 of one particle,

dH(t1, t2) =

∫ r2

0

dl =

∫ r2

0

a(t2)
dr√

1− k r2
. (7.10)

In addition, the geodesic equation for ultra-relativistic particles gives ds =
0, i.e., dt = a(t)dr/

√
1− k r2, which can be integrated along the trajectory

of the particles,
∫ t2

t1

dt

a(t)
=

∫ r2

0

dr√
1− k r2

. (7.11)

We can now replace in the expression of dH and get

dH(t1, t2) = a(t2)

∫ t2

t1

dt

a(t)
. (7.12)

Usually, the result is presented in this form. However, for the following
discussion, it is particularly useful to eliminate the time from the integral
by noticing that dt = da/(aH),

dH(a1, a2) = a2

∫ a2

a1

da

a2H(a)
, (7.13)

where the Hubble parameter is seen now as a function of a. Let us assume
that t1 and t2 are two times during Radiation Domination (RD). We know
from the Friedmann equation that during RD on has H ∝ a−2, so we can
parametrize the Hubble rate as H(a) = H2 (a2/a)

2. We obtain

dH(a1, a2) = a2

∫ a2

a1

da

a22H2
=

1

H2

(a2 − a1)
a2

. (7.14)
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If the time t2 is much after t1 so that a2 ≫ a1, the expression for the
horizon does not depend on a1,

dH(a1, a2) ≃
1

H2
. (7.15)

So, during RD, the horizon equals the Hubble radius at time t2 (in agree-
ment with the result of Eq. (5.45) with n = 1/2). During matter domi-
nation, the horizon is still close to the Hubble radius, modulo a factor of
order one.

The horizon represents the causal distance in the universe. Suppose
that a physical mechanism is turned on at time t1. Since no information
can travel faster than light, the physical mechanism cannot affect distances
larger than dH(t1, t2) at time t2. So, the horizon provides the coherence
scale of a given mechanism. For instance, if a phase transition creates bub-
bles or patches containing a given vacuum phase, the scale of homogeneity
(i.e., the maximum size of the bubble, or the scale on which a patch is nearly
homogeneous) is given by dH(t1, t2) where t1 is the time at the beginning
of the transition.

Before photon decoupling, the Planck temperature of photons at a given
point depends on their local density. A priori, we can expect that the
universe will emerge from a quantum gravity stage with random values of
the local density. The coherence length, or characteristic scale on which the
density is nearly homogeneous, is given by dH(t1, t2). We have seen that if
t1 and t2 are two times during radiation domination, this quantity cannot
exceed RH(t2), even in the most favorable limit in which t1 is chosen to
be infinitely close to the initial singularity. We conclude that at time t2,
the photon temperature should not be homogeneous on scales larger than
RH(t2).

CMB experiments map the photon temperature on our last-scattering-
surface at the time of photon decoupling. So, we expect CMB maps to be
nearly homogeneous on a characteristic scale RH(tdec). This scale is very
easy to compute: knowing that H(t0) is of the order of (h/3000)Mpc−1

with h ≃ 0.7, we can extrapolate H(t) back to the time of equality, and
find that the distance RH(tdec) subtends an angle of order of a few degrees
in the sky - instead of encompassing the diameter of the last scattering
surface. So, it seems that the last scattering surface is composed of several
thousands causally disconnected patches. However, the CMB temperature
anisotropies are only of the order of 10−5: in other words, the full last
scattering surface is extremely homogeneous. This appears as completely
paradoxical in the framework of the Hot Big Bang scenario.

What is the origin of this problem? When we computed the horizon,
we integrated (a2H)−1 over da and found that the integral was converging
with respect to the boundary a1: so, even by choosing the initial time to be
infinitely early, the horizon is bounded by a function of a2. If the integral
was instead divergent, we could obtain an infinitely large horizon at time t2
simply by choosing a1 to be small enough. The convergence of the integral

∫ a2

a1

da

a2H(a)
=

∫ a2

a1

da

aȧ
(7.16)

with respect to a1 → 0 depends precisely on the fact that the expansion
is accelerated or decelerated. For linear expansion, the integrand is 1/a,
the limiting case between convergence and divergence. If it is decelerated,
ȧ decreases and the integral converges. If it is accelerated, ȧ increases and
the integral diverges in the limit a1 → 0.
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So, if the radiation dominated phase is preceded by an infinite stage
of accelerated expansion, one can reach an arbitrarily large value for the
horizon at the time of decoupling. In fact, in order to explain the homo-
geneity of the last scattering surface, we only need to boost the horizon by
a factor of ∼ 103 with respect to the Hubble radius at that time. This can
be fulfilled with a rather small amount of accelerated expansion.

Let us take an exemple and assume that between ai and af , the accel-
eration is exponential, a = eαt. In this case, the Hubble parameter ȧ/a is
constant over this period: let’s call it Hinf . The horizon computed between
ai and af reads:

dH(ai, af ) = af

∫ af

ai

da

a2Hinf
=

1

Hinf

(

af
ai
− 1

)

≃ 1

Hinf

af
ai

. (7.17)

So, at the end of inflation, the horizon is larger than the Hubble radius
RH = 1/Hinf by a factor af/ai, i.e, by the exponential of the number of
inflationary e-folds. After, the horizon will keep growing in the usual way,

dH(ai, a2) = a2

∫ a2

ai

da

a2H(a)

=
a2
Hinf

(

1

ai
− 1

af

)

+ a2

∫ a2

af

da

a2H(a)

≃ 1

Hinf

a2
ai

+
1

H2
, (7.18)

and remains much larger than the Hubble radius 1
H2

.
The condition for solving the horizon problem can be shown to be ex-

actly the same as for solving the flatness problem: the number of inflation-
ary e-fold should be at least equal to that of post-inflationary e-folds. If
it is larger, then the size of the observable universe is even smaller with
respect to the causal horizon.

7.1.3 Origin of perturbations

Since our universe is inhomogeneous, one should find a physical mechanism
explaining the origin of cosmological perturbations. Inhomogeneities can
be expanded in comoving Fourier space. Their physical wavelength

λ(t) =
2πa(t)

k
(7.19)

is stretched with the expansion of the universe. During radiation domina-
tion, a(t) ∝ t1/2 and RH(t) ∝ t. So, the Hubble radius grows with time
faster than the perturbation wavelengths. We conclude that observable
perturbations were originally super-Hubble fluctuations (i.e., λ > RH ⇔
k < 2πaH). Actually, the discussion of the horizon problem already showed
that at decoupling the largest observable fluctuations are super-Hubble fluc-
tuations. Even if we take a smaller scale, e.g. the typical size of a galaxy
cluster λ(t0) ∼ 1 Mpc, we find that the corresponding fluctuations were
clearly super-Hubble fluctuations for instance at the time of nucleosynthe-
sis. We have seen that in the Hot Big Bang scenario (without inflation) the
Hubble radius RH(t2) gives an upper bound on the causal horizon dH(t1, t2)
for whatever value of t1. So, super-Hubble fluctuations are expected to be
out of causal contact. The problem is that it is impossible to find a mecha-
nism for generating coherent fluctuations on acausal scales. There are two
possible solutions to this issue:
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• we can remain in the framework of the Hot Big Bang scenario and
assume that perturbations are produced causally when a given wave-
length enters into the horizon. In this case, there should be not co-
herent fluctuations on super-Hubble scales, i.e. the power spectrum
of any kind of perturbation should fall like white noise in the limit
k ≪ aH . This possibility is now ruled out for at least two reasons.
First, the observation of CMB anisotropies on angular scales greater
than one degree (i.e., super-Hubble scales at that time) is consistent
with coherent fluctuations rather than white noise. Second, the obser-
vations of acoustic peaks in the power spectrum of CMB anisotropies
is a clear proof that cosmological perturbations are generated much
before Hubble crossing, in such way that all modes with a given wave-
length entering inside the Hubble radius before photon decoupling
experience coherent acoustic oscillations (i.e. oscillate with the same
phase).

• we can modify the cosmological scenario in such way that all cosmo-
logical perturbations observable today were inside the causal horizon
when they were generated at some early time (we will study a concrete
generation mechanism in section 7.3).

So, our goal is to find a paradigm such that the largest wavelength ob-
servable today, which is λmax(t0) ∼ RH(t0) (see section 5.2.2), was already
inside the causal horizon at some early time ti. If before ti the universe
was in decelerated expansion, then the causal horizon at that time was of
order RH(ti). How can we have λmax ≤ RH at ti and λmax ∼ RH today? If
between ti and t0 the universe is dominated by radiation or matter, it is im-
possible since the Hubble radius grows faster than the physical wavelengths.
However, in general,

λ(t)

RH(t)
=

2πa(t)

k

ȧ(t)

a(t)
=

2πȧ(t)

k
, (7.20)

so that during accelerated expansion the physical wavelengths grow faster
than the Hubble radius. So, if between some time ti and tf the universe
experiences some inflationary stage, it is possible to have λmax < RH at ti:
the scale λmax can then exit the Hubble radius during inflation and re-enter
approximately today (see Figure 7.1).

It is easy to show that once again, the minimal number of inflationary
e-folds requested for solving this problem should be at least equal to that
of post-inflationary e-folds.

One could argue that the argument on the origin of fluctuations is equiv-
alent to that of the horizon problem, reformulated in a different way. Any-
way, for understanding inflation it is good to be aware of the two arguments,
even if they are not really independent from each other.

7.1.4 Monopoles

We will not enter here into the details of the monopole problem. Just in
a few words, some phase transitions in the early universe are expected to
create “dangerous relics” like magnetic monopoles, with a very large density
which would dominate the total density of the universe. These relics are
typically non-relativistic, with an energy density decaying like a−3: so, they
are not diluted, and the domination of radiation and ordinary matter can
never take place.
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Figure 7.1: Comparison of the Hubble radius with the physical wavelength
of a few cosmological perturbations. During the initial stage of accelerated
expansion (called inflation), the Hubble radius grows more slowly than
each wavelength. So, cosmological perturbations originate from inside RH .
Then, the wavelength of each mode grows larger than the Hubble radius
during inflation and re–enters during radiation or matter domination.

Inflation can solve the problem provided that it takes place after the
creation of dangerous relics. During inflation, monopoles and other relics
will decay like a−3 (a−4 in the case of relativistic relics) while the leading
vacuum energy is nearly constant: so, the energy density of the relics is
considerably diluted, typically by a factor (af/ai)

3, and today they are ir-
relevant. The condition on the needed amount of inflation is much weaker
than the condition obtained for solving the flatness problem, since danger-
ous relics decay faster than the effective curvature density (ρeffk ∝ a−2).

7.2 Slow-roll scalar field inflation

So, the first three problems of section 7.1 can be solved under the assump-
tion of a long enough stage of accelerated expansion in the early universe.
How can this be implemented in practice?

First, by combining the Friedman equation (2.47) in a flat universe with
the conservation equation (2.48), it is easy to find that

ä > 0 ⇒ ρ+ 3p < 0. (7.21)

What type of matter corresponds to such an unusual relation between den-
sity and pressure? A positive cosmological constant can do the job:

pΛ = −ρΛ ⇒ ρΛ + 3pΛ = −2ρΛ < 0. (7.22)

But since a cosmological constant is... constant, it cannot be responsible
for an initial stage of inflation: otherwise this stage would go on forever,
and there would be no transition to radiation domination.

Let us consider instead the case of a scalar field (i.e., a field of spin zero,
represented by a simple function of time and space, and invariant under
Lorentz transformations). The general action for a scalar field in curved
space-time

S = −
∫

d4x
√

|g| (Lg + Lϕ) (7.23)
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involves the Lagrangian of gravitation

Lg =
R

16πG (7.24)

and that of the scalar field

Lϕ =
1

2
∂µϕ∂

µϕ− V (ϕ) =
1

2
gµν∂µϕ∂νϕ− V (ϕ) (7.25)

where V (φ) is the scalar potential. The variation of the action with respect
to gµν enables to define the energy-momentum tensor

Tµν = ∂µϕ∂νϕ− Lϕgµν (7.26)

and the Einstein tensor Gµν , which are related through the Einstein equa-
tions

Gµν = 8πG Tµν . (7.27)

Instead, the variation of the action with respect to ϕ gives Klein-Gordon
equation

1
√

|g|
∂µ

[

√

|g|∂µϕ
]

+
∂V

∂ϕ
= 0 . (7.28)

The same equation could have been obtained using a particular combination
of the components of Tµν and their derivatives, which vanish by virtue of the
Bianchi identities (in other word, the Klein-Gordon equation is contained
in the Einstein equations).

Let us now assume that the homogeneous Friedmann universe with flat
metric

gµν = diag
(

1,−a(t)2,−a(t)2,−a(t)2
)

(7.29)

is filled by a homogeneous classical scalar field ϕ̄(t). One can show that the
corresponding energy-momentum tensor is diagonal, T ν

µ = diag(ρ,−p,−p,−p),
with

ρ =
1

2
˙̄ϕ
2
+ V (ϕ) , (7.30)

p =
1

2
˙̄ϕ
2 − V (ϕ) . (7.31)

The Friedmann equation reads

G0
0 = 3H2 = 8πG ρ (7.32)

and the Klein-Gordon equation

¨̄ϕ+ 3H ˙̄ϕ+
∂V

∂ϕ
(ϕ̄) = 0 . (7.33)

These two independent equations specify completely the evolution of the
system. However it is worth mentioning that the full Einstein equations
provide another relation

Gi
i =

(

2
ä

a
+

(

ȧ

a

)2
)

= −8πG p . (7.34)

The combination Ġ0
0 + 3H(Ġ0

0 − Gi
i) vanishes (it is one of the Bianchi

identities), and gives a conservation equation ρ̇ + 3H(ρ+ p) = 0, which is
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nothing but the Klein-Gordon equation. Finally, the combination Gi
i −G0

0

provides a very useful relation

Ḣ = −4πG ˙̄ϕ
2

(7.35)

which is consistent with the fact that the Hubble parameter can only de-
crease.

The condition p < −ρ/3 reads ˙̄ϕ
2
< V : when the potential energy

dominates over the kinetic energy, the universe expansion is accelerated.
In the limit of zero kinetic energy, the energy-momentum tensor would be
that of a cosmological constant, and the expansion would be exponential
(this is called “De Sitter expansion”) and everlasting. For a long, finite
stage of acceleration we must require that the first slow-roll condition

1

2
˙̄ϕ
2 ≪ V (ϕ̄) (7.36)

holds over an extended period. Since the evolution of the scalar field is
given by a second-order equation, the above condition could apply instan-
taneously but not for an extended stage, in particular in the case of oscil-
latory solutions. If we want the first slow-roll condition to hold over an
extended period, we must impose that the time-derivative of this condition
also holds (in absolute value). This gives the second slow-roll condition

| ¨̄ϕ| ≪
∣

∣

∣

∣

∂V

∂ϕ
(ϕ̄)

∣

∣

∣

∣

(7.37)

which can be rewritten, by virtue of the Klein-Gordon equation, as

| ¨̄ϕ| ≪ 3H | ˙̄ϕ| . (7.38)

When these two conditions hold, the Friedmann and Klein-Gordon equa-
tions become

3H2 ≃ 8πG V (ϕ̄) , (7.39)

˙̄ϕ ≃ − 1

3H

∂V

∂ϕ
(ϕ̄) . (7.40)

The two slow-roll conditions can be rewritten as conditions either on the
slowness of the variation of H(t), or on the flatness of the potential V (ϕ).

So, a particular way to obtain a stage of accelerated expansion in the
early universe is to introduce a scalar field, with a flat enough potential.
Scalar field inflation has been proposed in 1979 by Guth. Starting from
1979 and during the 80’s, most important aspects of inflation were stud-
ied in details by Starobinsky, Guth, Hawking, Linde, Mukhanov and other
people. Finally, during the 90’s, many ideas and models were proposed
in order to make contact between inflation and particle physics. The pur-
pose of scalar field inflation is not only to provide a stage of accelerated
expansion in the early universe, but also, a mechanism for the generation of
matter and radiation particles, and another mechanism for the generation
of primordial cosmological perturbations. Let us summarize how it works
in a very sketchy way.

Slow-roll. First, let us assume that just after the initial singularity, the
energy density is dominated by a scalar field, with a potential flat enough
for slow–roll. In any small region where the field is approximately homo-
geneous and slowly–rolling, accelerated expansion takes place: this small
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region becomes exponentially large, encompassing the totality of the present
observable universe. Inside this region, the causal horizon becomes much
larger than the Hubble radius, and any initial spatial curvature is driven
almost to zero – so, some of the main problems of the standard cosmological
model are solved. After some time, when the field approaches the minimum
its potential, one of the two slow-roll conditions breaks down, and inflation
ends: the expansion becomes decelerated again.

Reheating. At the end of inflation, the kinetic energy of the field is bigger
than the potential energy; in general, the field is quickly oscillating around
the minimum of the potential. According to the laws of quantum field
theory, the oscillating scalar field will decay into fermions and bosons. This
could explain the origin of all the particles filling our universe. The particles
probably reach quickly a thermal equilibrium: this is why this stage is called
“reheating”.

Generation of primordial perturbations. Finally, the theory of scalar
field inflation also explains the origin of cosmological perturbations – the
ones leading to CMB anisotropies and large scale structure formation. Us-
ing again quantum field theory in curved space–time, it is possible to com-
pute the amplitude of the small quantum fluctuations of the scalar field
ϕ (as well as the quantum fluctuations of the metric hµν). The physical
wavelengths of these fluctuations grow quickly, like in figure 7.1. So, they
are initially inside the Hubble radius, where we can apply the laws of quan-
tum mechanics in flat space-time (as long as k ≪ aH , the modes do not
see the curvature of space-time). In the opposite limit, when a wavelength
is stretched to scales larger than the Hubble length, it is possible to show
that the modes experience a kind of quantum–to–classical transition, in the
sense that they become indistinguishable from classical stochastic fluctu-
ations: hence, the primordial fluctuations have a random distribution (as
expected), but we don’t need to employ the formalism of quantum mechan-
ics (wave functions, etc.) in order to describe their statistics. In addition,
the initial quantum fluctuations δϕ are assumed to be vacuum fluctuations
(corresponding to the fundamental state of the field δϕ). As a consequence,
the probability distribution of each mode δϕ(k) after the transition can be
showed to be a Gaussian, depending only on k. Hence, at a given time,
all information about the statistics of the field is contained in the power
spectrum 〈|ϕ(k)|2〉, which is a function of k.

7.3 Inflationary perturbations

7.3.1 Scalar perturbations

The perturbations of the scalar field δϕ are coupled with those of the scalar
metric fluctuations: for instance, φ and ψ in the longitudinal gauge. At first
order in perturbation theory, it is easy to show that φ = ψ, so the problem
of scalar perturbations during inflation reduces to the evolution of two
quantities only, δϕ and φ. In addition, the linearized Einstein equations
provides a relation between δϕ and φ: they are not independent, and their
evolution is dictated by a single equation of motion.

As explained above, quantum field theory allows to exactly follow the
evolution and the quantum–to–classical transition of the fields δϕ and φ
during inflation. So, it is possible to compute exactly the power spectrum
of δϕ and φ for observable modes, i.e. on wavelengths much larger than
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the Hubble radius at the end of inflation. But how can we related these
spectra to the initial conditions at the beginning of radiation domination,
after the end of inflation?

We could fear that such a relation could be very difficult to compute,
and could depend on the mechanism through which the scalar field decays
into radiation and matter... Fortunately, this is not the case: the rela-
tion between the spectrum of fluctuations at the end of inflation and at
the beginning of radiation domination is trivial. The reason is that when
the wavelength of a mode φ(k) becomes much larger than the Hubble ra-
dius, the perturbation freezes out. Hence it is not affected by the decay
of the scalar field during reheating. But when the radiation and matter
particles are formed during reheating, they are sensitive to the gravita-
tional potential, and more particles accumulate in the potential wells. So,
the gravitational potential behaves like a mediator between the scalar field
perturbations during inflation and the radiation/matter perturbations in
the radiation/matter–dominated universe. If we can compute the power
spectrum 〈|φ(k)|2〉 at the end of inflation, we are done, because this power
spectrum remains the same at the beginning of radiation domination on
super-Hubble scale; then the initial condition described in Eq. (5.75) apply,
and the evolution of all radiation/matter perturbations is entirely deter-
mined.

It is far beyond the level of these notes to compute the evolution of
primordial perturbations during inflation. However, we should stress that
it can be studied in a very precise way using quantum field theory. The
result for the primordial spectrum of scalar metric perturbations during
inflation/radiation domination and on super-Hubble scales k ≪ aH reads:

〈|φ(k)|2〉 = 2

(

8πG

3k

)3
V 3

V ′2
, (7.41)

where V and V ′, which are both functions of ϕ, should be evaluated with
the value of the field corresponding to the time of Hubble crossing during
inflation for each mode k, i.e., with the value ϕ̄(t) at the time t when
k = aH . Hence, the primordial spectrum depends on k not only through
the above k−3 factor, but also through the V 3/V ′2 factor. However, since

the field is in slow-roll, V 3/V ′2 does not vary a lot between the time at
which the largest and the smallest observable wavelengths cross the Hubble
radius during inflation. Hence, the dependence of V 3/V ′2 on k is small, and
the above spectrum is close to a scale-invariant spectrum, 〈|φ(k)|2〉 ∝ k−3.
However, the deviation from exact scale-invariance (i.e. the value of the
spectral index n minus one) depends crucially on the evolution of this ratio

V 3/V ′2 with time and scale. By taking the derivative of the above equation,
one could show that n− 1 is indeed related to the ratios V ′′/V and V ′/V
evaluated when observable scales cross the horizon.

In the previous chapters, we saw that CMB and large scale struc-
ture observations allow to reconstruct the cosmological evolution during
radiation/matter/Λ domination, as well as the primordial spectrum 〈|φ(k)|2〉.
In particular, the amplitude A and spectral index n (defined in Eq. (5.93))
of the primordial spectrum 〈|φ(k)|2〉 can be measured. According to the

above results, these observations provide a measurement of V 3/V ′2 and of
its evolution with ϕ within a small interval. Hence the potential V (φ) can
be reconstructed to some extent from observations. It is quite remarkable
that current observations provide a way to constrain the physical mecha-
nism governing the evolution of the universe at extremely high energy (con-
siderably higher than during nucleosynthesis) and extremely early times (a
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tiny fraction of second after the initial singularity).

7.3.2 Tensor perturbations (gravitational waves)

The same mechanism which produces stochastic fluctuations of δϕ and φ
(more precisely, of the scalar metric perturbations) on cosmological scales
produces also stochastic fluctuations of the tensor metric perturbations,
i.e., of the tensor hij defined in Eq. (5.20). These perturbations are called
gravitational waves, since inside the Hubble radius they have oscillatory
solutions: there are deformation of our space-time manifold, propagating
like waves with the velocity of light. Unlike scalar perturbations, they do
not couple with matter fields or scalar fields within linear perturbation
theory. Like electromagnetic waves, gravitational waves can propagate in
the vacuum without being damped.

It is possible to compute the primordial spectrum of gravitational waves
(i.e., the primordial spectrum of the components of hij) using the same
formalism as for the scalar metric fluctuation φ. The result reads

〈|h(k)|2〉 = 2

3
(8πG)

2
k−3V , (7.42)

where V is evaluated like for scalar perturbations, i.e. with the value ϕ̄(t)
at the time t when k = aH . Here h stands for the components of hij (we
don’t give the exact definition of h here for concision).

Hence, inflation is also expected to fill the universe with a random back-
ground of gravitational waves which could be detected today, at least in
principle. Unfortunately, this background of gravitational waves is so low
that its detection is unlikely with the current generation (and even the next
generation) of gravitational wave detectors (VIRGO, LIGO, etc.) However,
there is a chance to detect it in the CMB: gravitational waves of primor-
dial origin are expected to contribute to the CMB spectrum on the largest
angular scales, as shown in figure 7.2. The shape of the tensor contribution
to the CMB spectrum can be computed with the same kind of numerical
code as for scalar perturbations. The main uncertainty is not on the shape,
but on the amplitude of this contribution. Equation (7.42) shows that the
amplitude depends on V during inflation, i.e. on the energy scale of infla-
tion. The condition for the tensor contribution to be roughly of the same
order as the scalar one in the large scale CMB spectrum is roughly that
V ∼ (1016GeV)4 during inflation, i.e. that the energy scale of inflation is
of the order of 1016GeV (coincidentally, this turns out to be the order of
magnitude of GUT symmetry breaking).

So far, the observation of CMB anisotropies is consistent with a spec-
trum arising only from scalar perturbations. A large tensor contribution
cannot be present, because it would lead to an increase in the ratio between
the amplitude of the large-scale plateau region and that of the small-scale
peak region, at odds with observation. Hence, CMB temperature maps
allow to put an upper limit on the energy scale of inflation: roughly, it has
to be smaller than 1016GeV. Future observations of the CMB will be able
to test the possible contribution of tensors with better precision: hence, in
the next years, cosmologists hope either to push this bound further down,
or to detect the background of primordial gravitational waves produced by
inflation.
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Figure 7.2: The red solid line shows the same reference CMB temperature
spectrum as in the previous figures. The dashed green line shows the ad-
ditional contribution from tensor perturbations for the same cosmological
model, assuming a primordial tensor amplitude such that roughly one third
of the observed CMB power spectrum on large angular scales would come
from tensors. The dashed blue curve shows the total spectrum which would
be observed in this model.

7.4 Success of the theory of inflation

Let us summarize the positive outcomes of the theory of inflation:

1. it provides a simple solution to the flatness, horizon and monopole
problems.

2. it includes in some unavoidable way a mechanism for producing pri-
mordial fluctuations starting from simple initial conditions, i.e. from a
perfectly homogeneous scalar field with vacuum fluctuations dictated
by quantum mechanics.

3. these perturbations have almost automatically the properties which
are necessary in order to explain observations: they are generated very
early and on super-Hubble scales; they have a Gaussian statistics and
obey to adiabatic initial conditions; they have a nearly scale-invariant
primordial spectrum.

4. inflation provides a mechanism for the generation of a thermal bath of
particles in the early universe (the so-called reheating phase occurring
after or during the scalar field oscillations and decay). Unfortunately,
this mechanism is very difficult to probe experimentally: reheating
does not have clear observable signatures, unlike the mechanism for
the generation of primordial fluctuations.
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5. thanks to the theory of inflation, it is possible to provide a self-
consitent explanation for the global properties of our universe without
making any assumption about quantum gravity (during inflation, one
quantizes only metric perturbations, not the metric itself: hence in-
flation is based on quantum field theory in curved space-time, but
NOT on quantum gravity). In fact, in inflationary cosmology, what
happens before inflation is usually not important: our universe only
keeps track of what happened during the last ∼60 e-folds of inflation
and after inflation.

The third point is the most convincing argument in favor of inflation. Be-
fore the first observations of CMB anisotropies, it was impossible to know
whether our universe was described by such initial conditions (primordial
perturbations on super-Hubble scales, Gaussian, adiabatic and nearly scale-
invariant). So, cosmologist were studying various possible scenarios for the
generation of perturbations. The main alternative would be to assume that
they are generated during a phase transition (e.g. a spontaneous symmetry
breaking). In this case, they would appear inside the Hubble radius and
would be non-Gaussian, non-adiabatic and far from scale invariance. As
we have seen before, the observation of CMB anisotropies has confirmed
the four generic predictions of inflation, as far as primordial perturbations
are concerned. Alternative theories are discarded (at least as a dominant
mechanism for the generation of primordial perturbations) and most peo-
ple agree that inflation is a very likely scenario. It is a striking example
of a predictive and elegant theory (with few assumptions leading to many
observable consequences validated by observations).

The negative outcomes of the theory of inflation are the following:

1. inflation is based on a scalar field (usually called the inflaton), but
we don’t know anything about its origin and its relationship with
other known fields/particles. However it is possible to assume some
connection between inflation and particle physics (the inflaton could
be a Higgs field, the size of an extra dimension, etc.) The difficulty
is then to find a good reason for which the inflaton potential would
be flat enough for fulfilling the slow-roll conditionc. This argument
readily excludes the possibility that the inflaton would be the usual
electroweak Higgs field (in the context of standard particle physics and
gravity). However, it could still be a component of the Higgs field
associated with the breaking of the GUT symmetry (although this
question is very subtle and related to supersymmetry, supergravity,
etc.) There are many interesting research activities in this direction.

2. inflation predicts a background of gravitational waves which have not
been detected. Hopefully, this is only a matter of sensitivity: future
CMB experiments might see these primordial gravitational waves. If
they do, there would be one more very convincing evidence in favor
of inflation (primordial gravitational waves would be the “smoking
gun” of inflation), and the previous issue would become much more
interesting and promising, since we would finally know the energy
scale of inflation, as well as the details of the inflaton potential V (ϕ)
within some interval ∆ϕ. As long as we don’t see these primordial
gravitational waves, we can only constrain the function V 3/V ′2 (see
Eq. (7.41)). There exist one-parameter families of potentials all giving
the same combination V 3/V ′2, and hence the same primordial scalar
spectrum. Hence, the scale of inflation will remain unknown until pri-
mordial gravitational waves are observed. Of course, this might never
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occur, in which case the theory of inflation would not be excluded,
but its existence would not be proved or disproved as convincingly as
one would like to.
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Conclusions

Modern cosmology offers a detailed and self-consistent scenario, able to ex-
plains most (if not all) observations of the global properties of the universe.
The most impressive success of the past years is the fact that cosmological
perturbation theory (with initial conditions motivated by inflation) allowed
to predict the non-trivial spectrum of CMB temperature fluctuations much
before it was actually observed; the good agreement between the CMB data
obtained by WMAP and the predictions of the minimal ΛCDM scenario is
one of the greatest successes of modern science. The fact that the value of
ωb deduced from WMAP agrees so well with that infered from nucleosyn-
thesis is also particularly impressive.

However, the observations of the last decade reveal that the universe
contains nearly 25% of dark matter and 70% of cosmological constant (or
of another fluid leading to accelerated expansion today, generically called
dark energy), which are both of completely unknown nature and origin.
This two issues are now the main challenges in cosmology (the third chal-
lenge being to understand the nature and origin of the inflaton). Next
semester, the course of Pierre Salati will provide possible clues about these
two fundamental issues.
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